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This dissertation employs sample—average methods to study two important 

generalizations of the M /G / l  queue: M /G / l  queues w ith  modified services at the

beginning of busy periods; and finite-capacity M /G / l /K  queues w ith more general arrival 

processes. A ll of our results are given in explicit, transform—free form.

In  the first generalization, we consider a variety of M /G / l  models that have 

modified services at the beginning of busy periods, such as M /G / l  queues w ith exceptional 

first service, M /G / l  queues w ith set-up times, M /G / l  queues w ith  server vacations, and 

M /G / l queues under D—policy or N—policy. We study, via the preemptive—resume—last— 

in—first—out queue discipline, sample—average behavior of cumulative work in these 

systems, as observed by arriving customers. We derive waiting—time distributions of 

customers in these models. We also establish decomposition results for the G I/G /1  queue 

w ith server vacation. We further show that the decomposition result holds for more 

general vacation models. A ll results for these models are in fact given in the context of
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G I/G /1  queues, except for M /G / l  queues under D—policy or N—policy. Further more, our 

analyses are valid even when the system has combined feature of these modified services at 

the beginning of busy periods. As an application of some of our results, we compare control 

policies under linear cost assumptions.

In the second generalization, the arrival process we consider has the Markovian 

property and is governed by an "underlying" continuous—time Markov chain. Such arrival 

processes generalize several well-known point processes, such as the Markov modulated 

arrival process, the continuous—time Markov chain generated arrival process, any 

"phase—type" arrival process, and superpositions of these processes. For this model, we 

derive formulas for the long-run average jo in t behavior of queue length and remaining 

service time of the customer ( if  any) in service, over customer arrival epochs. We also 

discuss in detail computational issues in connection w ith these formulas. In particular, we 

describe very efficient computational procedures when the service—time distribution is 

either generalized hyperexponential or Erlang.
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C h a p t e r  1 

I n t r o d u c t io n

Queueing theory was developed prim arily to provide models to  predict behavior of 

systems that provide service for randomly arising demands. I t  originated as a very 

practical subject. The pioneering investigator was the Danish mathematician A.K. Erlang 

who, in 1909, published a book titled  The Theory o f Probabilities and Telephone Conver­

sations, in which he observed that a telephone system was generally characterized by 

Poisson input, exponential or constant holding (service) time, and multiple channels 

(servers). Based on this observation, he bu ilt a mathematical model to determine the 

optimal number of telephone lines to handle prescribed incoming call frequencies. This 

mathematical model is known today as a b irth—and—death process, and it  continues to 

serve as the backbone mathematical model for the study of telephone systems.

Telecommunication engineering remains a principal area of research and application 

of queueing theory today. Equipped w ith high-speed d ig ita l computers, modern 

telecommunication networks become increasingly more complicated. A t the same time, 

numerous other applications of queueing theory have also been discovered in production 

line planning, machine repair scheduling, to ll booths and taxi stands handling, inventory 

controlling, air tra ffic controlling, and computer system designing. Along w ith the increase 

in the areas of applications of queueing theory, the complexity of the mathematical models 

developed for various problems also increases rapidly. The b irth—and—death process used 

by Erlang is therefore no longer sufficient to meet the increasing needs of modeling more 

general physical queueing systems, a situation that naturally leads to the introduction of 

more sophisticated and also more complicated mathematical models in queueing theory. It 

also brings about, inevitably, many new mathematical complications which queueing 

theorists must address.

1
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As a direct consequence of extensive use of advanced mathematics, research results 

in modern queueing literature have become increasingly more d ifficu lt to  interpret. For 

example, many research results in queueing literature are given either in Laplace—Stieltjes— 

transform form, or in terms of roots determined by some analytic equations on the complex 

plane. The behaviors of these roots are not well understood. To mathematicians, results in 

such form are considered acceptable, because the solutions of the problems concerned are 

uniquely determined. But to those who need to apply queueing theory to managerial 

decision making, it  is extremely important that results be presented in implementable 

form. This concern makes results given in Laplace—Stieltjes transform or in terms of roots 

determined by analytic equations on the complex plane no longer acceptable, for at least 

the following two reasons: (1) such results do not provide clear physical connections

between the underlying structures of the models under consideration and the obtained final 

results, because of the so called "Laplacian curtain", or lack of understanding of the 

behavior of those roots; (2) although results in such form are uniquely determined, they do 

not suggest procedures for numerical computation. For instance, Laplace—Stieltjes— 

transform formulas for waiting—time distributions in queueing models do not in general 

provide schemes for computing the explicit distributions, because inversion of Laplace— 

Stieltjes transforms requires specially designed analytic integration on the complex plane. 

In extreme cases, the inversions necessary for obtaining explicit formulas could be as 

difficult as solving the original problem. In summary, modern queueing theory should 

mean not only building realistic mathematical models, but also aiming at meaningful and 

implementable final results. Based on this reasoning, we prefer to employ solution methods 

that lead to  results in  forms that not only reflect explicitly physical attributes of the 

models, but also are ready for numerical computation. Sample—average methods are ideal 

w ith respect to these objectives. Such methods work directly on typical realizations of the 

processes under study. They provide not only direct physical interpretations for the
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obtained results along every step of the analyses, but also natural procedures for numerical 

computation. This is the primary reason for our use of sample—average methods in this 

dissertation.

This dissertation is application oriented. Our purpose is to  analyze delay 

distributions of customers in several generalized M /G / l  queueing systems that arise 

naturally in applications. The notation M /G / l  here stands for Markovian (or Poisson) 

arrival process, general (usually renewal) service process, and one server. The generalized 

M /G / l  queueing models we analyze can be classified into two categories: (1) M /G / l

queues w ith modified services at the beginning of busy periods, and (2) M /G / l  f in ite -  

capacity queues w ith more general arrival processes.

There are five different models in the first category. They are: (1) M /G / l  queues 

w ith exceptional first services in busy periods; (2) M /G / l  queues w ith  set—up times; (3) 

M /G / l queues w ith server vacations; (4) M /G / l queues under certain control policies; 

(5) models of type (1), (2), and (4) w ith server vacations. A ll of these models arise 

frequently in applications.

Among these models, the M /G / l  queue w ith exceptional first service in each busy 

period has been studied previously by, for example, Welch [1964] and Itzhak, Maxwell and 

M iller [1965]. A ll the previous results for this model are given in Laplace—Stieltjes— 

transform form. In  this dissertation, we w ill derive explicit, sample—average results for 

both randomly selected customers as well as those who do not in itia te busy period in this 

model. Our methods of analyses are, in fact, valid in more general G I/G /1  settings. These 

explicit results serve as basic tools for analyzing other models in this category.

In M /G / l  queues w ith set-up times, the server spends a random set-up time before 

starting service at the beginning of each busy period. Because of this delay, the waiting 

time o f customers in the system increases stochastically. This model was first proposed by
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Yadin and Naor [1963]. Doshi [1985] studied the waiting—time distribution of customers in 

this model in the G I/G /1  setting (where GI stands for "general renewal arrival process"). 

A particularly interesting result of Doshi is that the waiting time of customers in this 

system is a sum of two random variables, one of which is the waiting time of customers in a 

standard G I/G /1  queue, and the other follows a distribution that is given in  a complicated 

transform form. In  the next chapter, we w ill give a sample—average proof of his result, as 

well an explicit expression for the waiting—time distribution of customers in this system.

The vacation model operates slightly differently. Specifically, whenever the server 

finishes a ll the work in  the system, he takes a vacation. I f  the server returns from a 

vacation and finds at least one customer in the system, he starts service immediately; 

otherwise, he takes another vacation. This model was early studied by Keilson [1962], 

Gaver [1962], Skinner [1967], Cooper and Murray [1969]; and then studied subsequently by 

many other queueing analysts. They showed that the waiting time of customers in the 

system is decomposed into two random variables, one of which is the same as the waiting 

time of customers in a standard M /G / l  queue, and the other is distributed as the 

equilibrium excess (or forward recurrence time) of a typical \acatien time. Doshi [1985] 

generalized this earlier decomposition results for the M /G / l  vacation model to the context 

of G I/G /1 . In  this dissertation, we w ill give an in tu itive  proof of Doshi's result and extend 

it  to more general settings.

M /G / l  queues under different control policies can be viewed as a class of M /G / l  

queues w ith  modified services at the beginning of busy periods. They originated in 

problems of optimal system control in queueing theory. The primary objective of system 

control is to determine, for a given policy, the optimal values of control variables (to be 

specified later) so that the long-run average cost of the system is minimized. One of the 

basic control policies is the N—policy, which was proposed and studied by Yadin and Naor

[1963] and further analyzed by Heyman [1968]. Under this policy, the system is turned on
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whenever the number of customers in the system reaches a predetermined integer N and is 

turned off when the server completes servicing all waiting customers. Heyman [1977] also 

proposed and studied a related T—policy, which differs from the N—policy in that instead of 

waiting for the number of customers in the system to  reach N, the system is turned on after 

a constant time interval, of length T , since i t  was last turned off; i f  there is no customer in 

the system when i t  is turned on, the system is turned off immediately. Balachandran 

[1973] and Balachandran and Tijms [1975] studied another related policy, called the 

D—policy, which is similar to the N—policy but i t  turns the system on whenever the 

cumulative work in the system exceeds a predetermined threshold of size D. Balachandran 

and Tijm s [1975] conjectured that i f  the waiting cost charged to the system is a linear 

function of the time—average workload, then the D—policy is better than the N—policy. 

This conjecture was later proved by Boxma [1976]. For more detailed description and 

discussions of these policies, please refer to the papers cited above, as well as to Crabill, 

Gross and Magazine [1977] and to Cooper [1981], pp. 343—253.

An im portant observation concerning queueing research in the area of system 

control is that systematic studies of the probabilistic behavior of M /G / l  queues under 

various control policies do not exist. This is prim arily due to the difficulties involved in 

solving these systems by traditional methods, especially in the case of the M /G / l  queue 

under the D—policy. This situation forces queueing analysts to impose restrictive 

assumptions on the cost functions that are used in their analysis of optimal control so that 

only m inimal information about the systems is required. Clearly, restrictive assumptions 

apply only to lim ited cases. General analysis o f system control does require detailed 

information on the probabilistic behavior of these queueing systems (waiting—time 

distributions, in  particular). In  this dissertation, we w ill derive waiting—time distributions 

of customers in  M /G / l  queues under the D—policy and the N—policy, using 

sample-average methods.
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The basic idea behind our analyses of all these M /G / l  queues w ith  modified services 

at the beginning of busy periods is to study the behavior of workloads in the systems as 

seen by arriving customers via the preemptive—resume—LIFO (last—in, firs t—out) queue 

discipline. In  this queue discipline, the service requested by the first customer in a busy 

period w ill always be finished the last. I f  a customer arrives at times epoch t, then the 

tota l workload in  the system ( if any) contributed by those who entered the system after the 

start of the busy period in progress is not affected in any way by the customer who 

initiated the busy period. I f  we interpret the set—up times or the remaining vacation times 

as services brought in by "artific ia l" customers who in itia te  busy periods, then, this 

observation, together w ith the fact that the preemptive—resume LIFO queue discipline is 

work—conserving, leads to direct explanation of the decomposition results for M /G / l  

queues w ith  set—up times or w ith server vacations.

We now discuss M /G / l systems in our second category o f generalizations, namely 

M /G / l fin ite—capacity queues w ith more general arrival processes. An important aspect of 

these models is the constraint on system capacity. This constraint usually causes 

considerable analytic difficulties when one attempts to apply traditional methods for 

infin ite-capacity queues to the analyses of fin ite—capacity systems. Consider the M /G / l 

queue, for example. For this model, i t  is typical to start the analysis by analyzing a 

Markov chain embedded at customer-departure epochs. I f  the capacity is not bounded 

above, the probabilistic behavior of cumulative work brought in the system by future 

arrivals w ill not depend on the current state of the embedded Markov chain (i.e. the queue 

length). This property, which is absent in fin ite—capacity queues, offers considerable 

analytic convenience to queueing analysts when they study infinite—capacity queues. In 

reality, almost all queues have lim ited capacities. Only for queues whose capacities are so 

large that the probability that an arriving customer sees the system fu ll is negligible can 

the infin ite—capacity approximation be justified. In this dissertation, we w ill develop
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unified methods for the analyses of both infin ite— and fin ite—capacity queues.

Another important aspect of models in this category is that we allow the arrival 

process to the system to be much more general than Poisson. There are two basic 

motivations for making such generalizations of the M /G / l /K  queue: (1) we want to allow 

for dependent interarrival times so that the resulting system is more realistic; (2) we also 

want the arrival process to be versatile enough so that it  could accommodate a large 

variety of applications. The particular class of arrival processes we consider w ill be 

"Markovian" arrival processes that are "controlled" or "governed" by an underlying 

continuous—time Markov chain. We w ill call this type of arrival processes C—processes. 

There are many point processes fitting  this description, such as: (1) continuous—time— 

Markov-chain generated arrival processes, (2) doubly stochastic Poisson processes (also 

called "Markov modulated processes"; see, for example, Rogterschot and deSmit [1986]), 

(3) "phase—type" renewal processes, and (4) superpositions of these arrival processes. In 

Chapter 3 we w ill give additional explanations for considering such arrival processes and 

we w ill analyze the long-run average jo int behavior of queue length and remaining service 

time of the customer, i f  any, in service, over customer arrival epochs, in the C /G / l /K  

queue. Our results provide explicit state information needed for the derivation of many 

other quantities of interest in this model, notably the waiting—time distribution. A ll of our 

results are given in explicit, transform—free form. We also discuss in detail computational 

issues related to these results. In particular, we show that i f  the service—time distributior. 

is either generalized hyperexponential or Erlang, then the computational complexity of our 

schemes can be reduced significantly.
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C h a p t e r  2

A n a ly s e s  o f  M /G /l Q ueues w ith  M o d if ie d  S e rv ic e s  

a t  th e  B e g in n in g  o f  B u sy  P e rio d s

2.1 INTRODUCTION

The models we study in this chapter are: (1) M /G / l  queues w ith  exceptional first 

services in busy periods; (2) M /G / l  queues w ith set-up times; (3) M /G / l  queues w ith 

server vacations; (4) M /G / l  queues under certain control policies; and (5) models of type 

(1), (2), (4) w ith  server vacations. In  Chapter 1, we have given definitions of these models 

and a brief description of the related existing results in the queueing literature. We have 

introduced three major control policies: the T—policy, the N—policy and the D—policy. We 

have also mentioned that a systematic study of systems under these control policies does 

not exist in the literature, because of the difficulties involved in  solving some of the 

systems by traditional methods. In this section, as well as in the subsequent sections, we 

w ill address this particular issue.

From the definitions of these three control policies, we see that, by interpreting the 

parameter T  as a vacation of constant duration, the T—policy is actually a special case of 

the vacation model (see Doshi [1985]). As described in Chapter 1, the customer delay in 

the vacation model can be decomposed into the sum of two random variables. The first of 

the two is distributed as the customer delay in a standard M /G / l  queue and the second is 

distributed as the equilibrium excess (or forward recurrence time) of a typical vacation 

time. So, the waiting—time distribution of customers in an M /G / l  queue under the 

T—policy is indirectly known.

The distribution of customer delay in the N—policy case has also been studied in the
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literature before (see Neuts [1981]), although the result is given in transform form. Similar 

to the standard M /G / l  queue, the number of customers in the system at customer 

depaxture epochs forms a Markov chain. By using standard methods for solving the 

M /G / l—type queues, one can derive the distribution of customer delay in the M /G / l  

queue operating under the N—policy.

The distribution of customer delay for the M /G / l  queue under the D—policy does 

not seem to have been studied before. In this chapter, we w ill study the delay distribution 

of customers in the M /G / l  queue under D—policy by constructive sample—path approaches. 

The basic idea behind our analysis is to classify customers according to  whether they arrive 

during off— or on—period of the system. I f  a customer arrives when the system is off, then 

he has to wait for the system to be turned on and for all customers in front of him  to 

complete their services, before he can receive any service; given the number of customers 

present in the system when i t  is turned on, the waiting—time distribution for such a 

customer is fa irly  easy to compute, by conditioning on his position in queue. The main 

difficu lty lies on analyzing the delay of customers who arrive when the system is on. What 

we w ill do in our analysis is to treat all the customers present in the system when it  is 

turned on as a single "customer", whom we call a supercustomer; this supercustomer is 

then considered the one who initiates the busy period. W ith  this view, the delay of 

customers who arrive during on—periods of the system is the same as the delay of those who 

do not in itia te  busy periods in an M /G / l  queue w ith "exceptional" first services in  busy 

periods. By this consideration, we relate the analysis of M /G / l  queues under D—policy to 

that of M /G / l  queues w ith  exceptional first service in busy periods.

The organization of the rest of this chapter is as follows. In Section 2.2, we analyze 

the delay distribution of customers in the M /G / l  queue w ith exceptional first services, 

especially of those who have "ordinary" services in this system. Because the method we 

use is valid also for general renewal arrival processes, we w ill state our results in the
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context of G I/G /1  queues. We also extend our basic method of analysis to G I/G /1  queues 

w ith set—up times and G I/G /1  queues w ith server vacations. We show that the decom­

position result for vacation models holds in more general settings (combinations of vacation 

models and other variations). In Section 2.3, we derive, in explicit forms, the distributions 

of customer delays in  M /G / l  queues under the D—policy and the N—policy. In  Section 2.4, 

we discuss some applications of the results to the optimal system control.

2.2 PR ELIM IN A R Y  RESULTS AND SOME APPLICATIONS

The basic model we analyze is a G I/G /1  queue w ith in fin ite  waiting space. 

A rriving customers are served according to the preemptive—resume—LIFO queue discipline. 

We assume, w ithout loss of generality, that the first customer arrives at time 0 finding the 

system empty. For i =  1, 2, • • •, let A j and Sj be the arrival time and the service time of 

the i th customer, respectively. Also, let T j =  A i+1— A i? i > 1; then we assume (T i? i > 1} 

and {Sj, i > 1} are two sequences of i.i.d. (independent and identically distributed) random 

variables that are also independent of one another. In addition, we assume that the arrival 

rate A = 1 /E (T ) ( 0 < A < o o ) i s  less than the service rate (i = 1/E(S) ( 0 <  \i <  oo ), 

where T and S denote typical versions of interarrival and service times respectively.

We define the state of the system to be {j; xx,x2, • • ’ ,Xj), which indicates that: (1) 

there are j (j > 1) customers in the system; and (2) the remaining service times of these 

customers, arranged in increasing order of their arrival times, are respectively greater than 

x 1? x2, • • •, Xj. When the dimension is clear from the context, we also sometimes write x  in 

place of the vector (xx,x2, * • -,Xj). We denote by Oj(xj,x2, • • • ,xj) the lim iting  proportion of 

customers who, on their arrival, find the system in state {j; x x,x2,- • -,x j). Formally, 

aJ-(x1,x2,* • - ,Xj) is defined as
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( 2 ' 1 }

where l | j . x |(A j)  is the indicator function of the event that customer i finds the system in 

state { j;x }  on his arrival. Note that this lim it converges to a constant w .p.l (w ith 

probability 1) because of the assumption A <  fi. In the same way, we define a0 as the 

lim iting proportion of customers who, on arrival, find the system empty. Note that Qf0 and 

* - ,Xj) completely describe the probabilistic behavior of workload in the system as 

seen by arriving customers.

Our analysis in this section focuses on the evaluation of a0 and ^(x^Xg, • • -,Xj). 

Niu [1988] established, by a sample—average argument, that for j  > 1 and x 15* • - ,Xj > 0,

— -— -i---------J- - V  =  E[m ((S—x-)+)] , (2.2)
a j - i ( x n  * * 1 J '  n  y ’

where mD(t) is the renewal function for a "delayed" renewal process (see, for example Ross 

[1983], p.74) whose first interevent time is distributed as T  and the others as I, the idle 

period in a standard G I/G /1  queue; and o-j.^Xj,* • ^Xj.j) is defined to be a0 when j =  1. 

The operation (* )+ in  the right hand-side of (2.2) is defined to be max (0,*). For a 

complete discussion, please see Niu [1988]; in the following, we give an outline of his proof 

for completeness.

A basic concept needed for the proof of (2.2) is that of j—cycles, j  > 0. A j—cycle is 

defined to be a time period that begins w iih  an arrival finding the system in state {j;0 } 

and ends when such an event occurs again for the next time. For a given j  > 1, he 

evaluates the ratio of averages
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n

OTjCxj,- • • .X j.^ X j)  l im  i? i1{ j;x 1, - • • .X j.^ X j}  ( A i ) / n
n->oo

by considering successive (j—1)—cycles. Observe that b .  , -.(A ) =  0 (where
I J  1  >x 1 j  * " '  5X j - X /  n k

nk is the index of the arrival epoch at which the k th (j—1)—cycle begins) in  a (j—1)—cycle 

implies that 1 r- (A=) =  0 for every i in that cycle because the status of
I J 5 X 1 ? ’ * * 5X j - l 5 X j j

those customers who are present immediately before A remains unchanged as long as 

there are j  or more customers in the system. Therefore, by ignoring (j—1)—cycles w ith 

l { j —T x i x- i } ( Ank^ =  t îe a^ ove exPressi° n simplifies to

(x i>’ ‘ ’ ?x j - u  x j)  i } m  i

aj-l(Xl? ’ * ’? Xj-l)
n->oo m - S N i(x j | j—i;  x 1?- • ^x -.j) , (2.3)

1 = 1 J J

where m is the number of ( j—1)—cycles that begin in state { j—1; x i, * * *, X j.J  and 

N j(x - |j—l;x j,*  • •jXj-.J denotes the number of arrivals who find the system in state 

{j; x l5 - • x-.l5 Xj} during the i th such (j—1)—cycles. Since such a cycle is initiated by the

arrival of a "test" customer and since the queue discipline is preemptive—resume LIFO, 

N j(x j| j—l;x 1?- • -jX j.j) is distributed as the number of renewals in the random interval 

(0, (S—X j)+) in a "delayed" renewal process where the first interevent time is distributed as 

T  and the others as I. Furthermore, since the experience o f any customer is not affected in 

any way by those who arrive before him, these random variables are i.i.d., independent of 

{ j—1; x x,* • *, X j.J . Relation (2.2) now follows by applying the strong law of large numbers 

to the right-hand side of (2.3).

Applying relation (2.2) iteratively, we obtain the following explicit expression for

Qfj-(x i,x2,* * - ,x j):
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. j E[m ( (  Ŝ —x i )+)]
or.-(x) =  Q'0[E(mrk(S))lJ I I --------------------------, for j  > 1 and x  > 0 ; (2.4a)

, 0 D i = 1 E [m D(S)]

00

and a0 can be derived by the normalization condition a0 + .£ ^ -(0 )  =  1, leading to

o0 =  l - E [ m D(S)]. (2.4b)

We now consider a G I/G /1  queue where the first customer in each busy period 

requires an exceptional service. Let S1 be a typical exceptional service. For this system, 

we denote by a'Q and Oj(x1,x2, • • • ,Xj) the counterparts of a0 and Ofj(x1,x2, • • -,Xj) in the 

standard G I/G /1  queue. Note that relation (2.2) remains valid for &q and a j(x1,x2, • • • ,xj) 

for all j  > 2; and when j  =  1, we need to replace S by S1 in the right-hand side of (2.2).
00

Applying relation (2.2) iteratively and using the normalization condition .£^-(0 ) +  0 ^ = 1  

now lead to the following theorem:

Theorem 1. Consider a G I/G /1  queue w ith exceptional first services in busy periods. 

Then, in the preemptive—resume—LIFO queue discipline, we have, for j  > 1 and x  > 0,

. E[m ( ( S1- x 1)+)] j E[m ( ( S i-X i)+)]
a!-(x) =  a'0 [ E ^ f S 1))] [E(mn(S))]J‘1------2-----------------  f t   2------ 1---------- ; (2.5a)

D E [m D(S‘ )] E [m D(S)]

and
1 ~ E [ m ( S ) ]

a'o = ------------------------    (2.5b)
1 +  E [m D(S1) ] - E [m D(S)]

The Laplace—Stieltjes transform of the delay distribution for queues w ith 

exceptional firs t services is known previously for the Poisson—arrival case (see Welch

[1964], Avi—Itzhak, Maxwell and M iller [1965]). Our Theorem 1 is stated in the more 

general G I/G /1  setting and is proved constructively.
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Formula (2.5) describes the explicit average state behavior over all arrival epochs. 

As mentioned in Section 2.1, to derive the delay distribution of customers in systems under 

D—policy, we need the average state behavior over arrival epochs of only those who do not 

initiate busy periods; and this motivates the next theorem.

Theorem 2. In a G I/G /1  queue w ith exceptional first services in  busy periods, the

distribution of workload as seen by arriving customers who do not in itia te  busy periods is

given, for x > 0, by

P(W  < x) =  F * H(x) , (2.6)

where F(x) is given by F(x) =  1 — E[mD((S1—x)+)]/E [m D(S1)] and H(x) is the workload

distribution at the arrival epoch of a randomly selected customer in a corresponding 

standard G I/G /1  queue, given by

00 r  **j

H(x) =  a , +  . £ a j(0) * u (x ) , (2.7)

E[mD ( (S-x)*)]-,
where ^ (x )  =

E [m D(S)]

and [j] stands for j —fold convolution operation.

Proof. Equation (2.5) gives the complete description of workload behavior at the arrival 

epochs of all customers, including those who initiate busy periods. In order to describe the 

workload behavior at arrival epochs of only those who do not in itia te  busy periods, we 

exclude from consideration customers who find the system empty on their arrival by 

working w ith "relative proportions" Q;j(x1,x2,...,xJ-) for j  > 1 and x  > 0, defined by

a j ( x i,x2,...,x-) = ---------------a ](x1,x2,...,xj )
J 1 -  ak
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Substitution of (2.5) into the right-hand side of the above expression yields

« j ( x nx 2 v ,X j )  =

(2.8)

where the second equality is due to (2.4a). Since the right-hand side of (2.8) is the product

of F (x1) and aJ-.1(x2,...,X j) and since arj_1(x2,...,xJ-) for j  > 1 completely describe the 

distribution of the workload as seen by arrivals in a standard G I/G /1  queue, our proof is 

completed.

The argument used in the proof of Theorem 2 is very useful. By properly intro—

customer therefore initiates a busy period), we can derive the probability distribution of 

workload as seen by arrivals in a variety of related models. As examples, we w ill use this 

method to analyze two specific models: G I/G /1  queues w ith set—up times and G I/G /1  

queues w ith  server vacations.

Example 1. G I/G /1  Queue w ith  Set-up Times

In this model, at the beginning of each busy period, the server spends S1, w ith  

distribution of Gs(-), units of set-up time before starting to serve customers. 

Conceptually, this is equivalent to saying that at the beginning of each busy period, the 

server sequentially serves two customers: an "artific ia l" customer w ith  service time S1

followed immediately by a "genuine" customer w ith an ordinary service time. The 

following theorem is a direct consequence of this interpretation.
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Theorem 3. In a G I/G /1  queue w ith  set-up times, the distribution of the workload in the 

system as seen by arriving customers is given by

P(W  < x) =  Fs* H(x), (2.9)

where

1 + E [M (S  1 —x) [ S1>xl
Fs(x) =  1 -  Gs(x ) -------------------------------- ,

l+E fM C S 1)]

where M( - )  is the renewal function of a renewal process whose interevent time is 

distributed as the idle period in a standard G I/G /1  queue, and H(x) is as given in (2.7).

Proof. Since in this system the "artific ia l" customer is followed immediately by a genuine 

arrival, the first interevent time in the "delayed" renewal process described in the proof of 

(2.2) is no longer distributed as T; i t  is instead a constant time interval w ith  duration zero. 

Therefore, when j  =  1, the term E [N j(x jJ j—1; x l5- - - ,  X j.J] in (2.3) simplifies to G(xj) +  

E[M((SX—x x)+)], where G(x2) is the contribution to the total count by the genuine customer 

who arrives immediately after the arrival of the artificia l customer. The rest of the 

argument follows the same line as in the proof of Theorem 2.

Intu itively, i f  we ignore the part of the workload contributed by the "artific ia l" 

customer, the rest of the workload in the system (contributed by "genuine" customers) 

behaves exactly the same way as the workload in a standard G I/G /1  queue, because the 

artific ia l customer has no effect whatsoever on the behavior of genuine customers when the 

queue discipline is preemptive—resume LIFO. Thus, the only unknown is the steady state 

behavior of the remaining "artific ia l service" at the arrival epochs of genuine customers. 

Theorem 3 actually gives the explicit expression of the distribution of this "remaining 

service". To verify this expression, we specialize S1 to an exponentially distributed random 

variable. Thus, the remaining workload contributed by the "a rtific ia l" customer and
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observed by genuine arrivals, due to the memoryless property of the exponential 

distribution, is exponentially distributed. In other words, when the set-up time is 

exponential, the tota l workload in the system as seen by genuine customers is distributed 

as the sum of S1 and the workload as seen by arrivals in a standard G I/G /1  queue. As a 

formal check, we have, by the memoryless property, that

EfMCS1—x) | S*>x] =  E fM ^ - x ) ] ,

and therefore Fs(x) =  1 — Gs(x) =  Gs(x). We see, (2.9) indeed simplifies as expected. 

Theorem 3 has been obtained in the literature before, in Laplace—Stieltjes—transform form 

(see Doshi [1985]). Our result is explicit and our argument slightly more constructive.

Example 2. G I/G /1  Queue w ith  Server Vacation

The definition of the vacation model was given in Chapter 1. Clearly, this model 

differs from the previous model only in the starting condition at the beginning of each busy 

period. By treating each vacation as an "artific ia l" service, we can also solve this model by 

the method described in the previous example. In the following analysis, we assume that 

the vacation times V i? i =  1, 2, • • are i.i.d. random variables.

Theorem 4. Under the condition that at least one of the three random variables T, S, V is 

nonlattice, the workload as seen by arriving customers in a G I/G /1  queue w ith  server 

vacation is distributed as the sum of two random variables; one of them is distributed as 

the workload as seen by arriving customers in a standard G I/G /1  queue, and the other the 

equilibrium excess (or forward recurrence time) of vacation.

Proof. The decomposition result of Theorem 4 can be easily established by treating the 

vacation times as "a rtific ia l" service times and using the same reasoning as we did in the 

previous example. The only unknown is the distribution of the remaining "artific ia l"
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service in the system as seen by "genuine" arrivals. In the preemptive—resume—LIFO 

queue discipline, we give, in figure 1, a typical realization of the contribution to the total 

workload from the vacations (that is, after deleting all workload brought in by genuine 

customers).

o

Figure 1. Contracted version of a typical realization of the "vacation 
workload" in a G I/G /1  queue w ith server vacation, in the preemptive— 
resume—LIFO queue discipline.

I t  is easy to see from figure 1 that the successive vacations and the successive idle periods 

are two independent renewal processes but both start at the same time (t =  0). Therefore, 

when t goes to infinity, observed from a renewal point of the idle—period process, the time 

un til the completion of the next vacation is distributed as the equilibrium excess (or 

forward recurrence time) of a vacation. The proof is completed by noting that all genuine 

customers in a "genuine busy period" see the same remaining vacation time.

I t  is important to  notice that this proof holds fo r many other in fin ite—capacity 

queueing models that have server vacations, such as vacation models w ith  exceptional first 

service, w ith set-up times, or under certain control policies. Figure 1 forms the basis for 

the analyses of all these models. The only necessary modification is that the successive idle 

periods for different variations of the vacation models are different. In  fact, Lee and 

Srinivasan [1989] have discovered that the mean waiting time of customers in an M /G / l 

vacation model under the N—policy is decomposed into two parts: the mean residual
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vacation time and the mean waiting time in an M /G / l  queue under the N—policy. They 

also commented that their result might be derived by applying vacation model results 

while treating the M /G / l  queue under N—policy as a standard M /G / l  queue, but they 

were unable to justify  this approach formally. We have shown here that such decompo­

sition results exist for more general queueing systems that combine server vacations w ith 

other features, as described above.

2.3 W A IT IN G -T IM E  DISTRIBUTIONS IN  M /G / l  QUEUES 

UNDER D—PO LICY AND N -P O LIC Y

In the previous section, we analyzed the average workload behavior over arrival 

epochs of customers in several related G I/G /1  models. A ll of the models analyzed in the 

previous section have modified starting conditions at the beginning of busy periods. These 

modifications were reinterpreted as "services" brought in by carefully defined "artific ia l" 

customers. Because all the services brought in by these "a rtific ia l" customers are 

independent of the arrival processes and the service processes in these systems, such 

reinterpretations greatly simplify our analysis. But, for the M /G / l  queues under D—policy 

and N—policy, we w ill no longer benefit from such convenient and direct reinterpretations, 

because the "artific ia l services" in these systems are dependent of the arrival process and 

the service process. Therefore, we have to modify our methods of analysis to avoid this 

"dependence" and try  to use indirectly the results obtained in the previous section.

In the M /G / l  queue under D—policy, customers are served according to the 

non—preemptive FIFO queue discipline. We classify customers into two types; those who 

arrive during off—periods of the system are called type one, and those during on—periods 

type two. The busy period in this model is defined as the time interval that starts at the 

arrival epoch of a customer who finds the system empty and ends at the departure epoch of
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a customer who leaves the system empty. Furthermore, let an n—busy period be one that 

has exactly n type—one customers; note that a busy period w ill be an n—busy period w ith 

probability bn, given by

bn =  P (“ S Ss<D, S S->D) =  G[n-1](D) -  G[n](D) , (2.10)

where G(x) is the service-time distribution. In  other words, bn is the probability that the 

work brought in by the nth arrival makes the total workload in the system exceed the 

threshold D.

Now, suppose that a customer (called the "test" customer) is selected randomly 

from the infin ite poll of all customers. Denote by A n, n > 1, the event that this customer 

arrives in an n—busy period. Given that our test customer arrives in an n—busy period, the 

distribution of his delay depends further on whether he is a type—one customer or a 

type—two. Suppose that he is a type-one customer and is in the kth position of the queue 

before the system is turned on; then he has to wait for the nth customer to arrive (the 

system is turned on then) and for all the k—1 customers in front of him to complete their 

services before he can receive any service. The time un til the arrival of the nth customer is 

simply the sum of n—k exponentially distributed random variables w ith rate A; this distri­

bution w ill be denoted by En_k(x) (E0(x) = 1). Denote by V kn(x) the distribution of the 

tota l service time requested by the k—1 customers in front of our test customer; then

v in(x ) =  (2.11a)

and, for k =  2, • • •, n,

k -i
V kn(x) =  P( £ Sj<x £ S:<D, £ S=>D)

K n  i  = 1 1 i  = l  1 i = l  1 '

n-1
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P ( V s j< x ,  °s |S j<D , J ^ D )
—  i  = 1 i  = 1

n - 1
P( £ S:<D, £ S:>D)

v i = l  1 _  i =  1 1 '

k - 1

By conditioning on the values of E S, we obtain, for k =  2, • • •, n that
i  = l

v k n ( x )  =  ~ Pp [ n S S i < D ,  E  S j > D  
b n  .  o  . i  = l  i  = l  1

k-1
£ S5= ti =1 1 d G ^ O O

1 G[n-k+l](D_t ) _  G[n_k](D -t) dG [ k - i ] (t). ( 2 . 1 1 b )

Since the test customer is equally likely to be at any one of the n positions, given that he is 

a type—one customer in an n—busy period, his delay distribution is given by

4 - J y ko*E a.t (x). (2.12)

Now, i f  the test customer is type—two, then his delay distribution can be obtained from 

(2.6) (Theorem 2) by specializing it  to the Poisson—arrival case; the idea is to treat all 

type-one customers in an n—busy period as a single "super—customer". Because the arrival 

of this super—customer initiates an n—busy period, the delay distribution of type—two 

customers in an n—busy period obviously follows the distribution (2.6). Denote by Un the 

tota l service time of the super customer in an n-busy period, then F(x) in (2.6) becomes

E[(Un-x ) * ]
Fn(x) =  1

E (U n)
(2.13)

where we have used the relation mD(t) =  At for the Poisson arrival and added a subscript n
n

to F to indicate that it  is associated w ith  an n-busy period. Since Un =  .E^Sj and since 

n - l  n
£ S; < D and E S5 >  D in any n—busy period, we have 

i = 1 i = l
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P (U j < x) =  1 -G (x ) /G (D ) (2.14a)

and, for n >  1, we have

P (U „ < x) =  P(Un < x  I "s  S,<D, .S S ^ D )

n  - 1

P( S Sj<x, . S Sj<D, . S Sj>D) _  1=1  1=1  1=1 _____

P (nS1Si<D, .S Sj>D)
i = 1 i= 1

n - 1

By conditioning on the values of .£ Si5 the above expression can be simplified as follows:
i = 1

P(Un < x) =  - j L  J°P (D <.S  Sj<x  | “e  S j= t) dG1" - 1̂ )  

=  - j ^  J ° [G (x -t)  -  G (D -t)] d G ^ - '^ t )

1 °G (x - t)  dG[n-1](t) -  G[n](D ) j . (2.14b)

We also have

rOO rOO
E (U J =  P (U j >  x) dx =  D +  P (U i >  x)dx 

Jo J d

roo

=  D +  [ /z -  G(x) dx]/G (D ), 
o

(2.15a)

where n  =  E(S); and, for n >  1,

roo rOO
E(Un) =  P (U n >  x)dx =  D +  P(Un >  x) dx 

Jo J d

I1 JjG(x-t) -  G(E>-t)] dGEn-1](t)=  D + dx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

23

=  D +  n y ° ° [ G [n_l3(D) - G[n](D) — J°G(x—t) dG[n-1](t) +  G[n](D )] dx

=  D +  -  { ^ ( x - t )  dG[n-1](t) dx

=  D +  -^ - j° ° |° G (x - t )  dG[n_1](t) dx.

By exchanging the order of integration in the last equality, we obtain 

E (U „) =  D +  - y T ® ( x- t )  dx dG[" - 1](t)

=  D +  f*  G(u) du dG[n_1](t).
°nJoJ D_ t

Exchanging the order of integrations one more time, we obtain

E(Un) =  DH— g - fiG [n~ 1]( D) -  J°G(u)G[n_1](D-u) du . (2.15b)

When a specific form of service distribution is given, (2.15b) is a formula ready for 

computation. We have therefore determined F n(x) completely.

We now compute the probability that the test customer is of type—one, given that 

he arrives in an n—busy period. Let K n to be the number of customers served in an n—busy 

period. Clearly, there must be n type—one customers in an n—busy period; and during the 

service period of these n customers, the average number of type two customers arrived to 

the system is AE(Un), and during the service period of these type—two customers, the 

average number of the newly arrived type—two customers is A[AE(Un)/j] and so forth. This 

reasoning leads to

E(Kn)=  n +  AE(Un) +  A E (U >  +  AE(U> 2 +
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=  n +  AE(Un) / ( l  — p). (2.16)

Since the first term in  the right-hand side of (2.16) is the number of type—one customers in 

an n—busy period and the second term the mean number of type—two customers who

arrived in an n—busy period, i t  follows that the probability for a randomly selected

customer to be of type one is

E p b j = E [r -£ - )+ ^ (U n) ’ (2-17a)

and that of type two is

E (K n) =  n ( l—p j+A E (U n) *) ■ (2.17b)

Combining (2.12), (2.6), and (2.17) now leads to the delay distribution for 

customers arriving w ith in  n—busy periods:

p (w  < x |  A n) =  ^ [ 4 - J  V kn*En.k(x)] +  [ l

=  n ( i- p ) + em u ~ )  k?,v kn*E«-kW  +  (2'18)

where H(x) is the delay distribution of a randomly selected customer in a standard M /G / l 

queue. By "unconditioning", we obtain the delay distribution for a randomly selected 

customer in the M /G / l  queue under D—policy:

p (w  < * ) = l v -»*E»-kw + 5[ f P i W f - * h (x )}- p - 19)

where an =  P (A n), the probability for a randomly selected customer to arrive in an n—busy 

period. Note that an does not equal to bn (see (2.10)), because the average number of 

customers served in different types of busy periods is different, leading to  length—biasing. 

To correct this bias, we interpret the number of customers served in a busy period as
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"sojourns" of a discrete—time semi—Markov process, and apply Theorem 8.3 of Ross [1983] 

to obtain

_ _  E (K „ )b n   E (K n ) b „   b „
a» -  S7ETiQ)ba -  E(K) ETKJ.'

b „ [n ( l—/?)+AE(Un)l
E (K ) L l ~P  J (2.20)

where, K  denotes the number of customers served in a randomly selected busy period. 

Substitution of (2.20) into (2.19) now leads to the following:

Theorem 5. The delay distribution of a randomly selected customer in an M /G / l  queue 

under D—policy is given by

P(W  < X )  =  n|  ^  { J  V tn*E n.k(x) +  F „*H (x )}. (2.21)

Theorem 6. The expected delay of customers in the system described in Theorem 5 is 

given by

EW  =  I + 5p j [ f t  dm(t) +  M l m(DH;) dm(t) +  V ” ' 0 )] +  E<w »)- (2-22)

00 r  I

where m (t) is the renewal function defined as m (t) =  ^(D) and E (W M) is the

expected delay of a randomly selected customer in a standard M /G / l  queue.

Proof. By definition, E(W ) =  J°°t dP(W  < t), where P(W  < t)  is given by (2.21). 

Applying (2.21) and changing the order of integration and summation, we obtain

E(w ) =  d{ j iE^ j [  j  V kn*E n.k(t) +  *  Fn*H (t)] }
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When the distribution function of a random variable is expressed in convolution form, the 

expectation of this random variable can be written as sum of the expectations of the 

component random variables. That is,

ew = I etkjI J , [ f t  + J }  <“ ■ * « ] + dF»w + J!1 dH(t)]}-

Noting that Fn(t) is a equilibrium distribution, we have

E<W> = JiETKj} J, [ft dVt»W + + + E(W«5]}

Substituting V kn(t) in (2.11) to the above equation, we obtain

E<W > =  E C K j t l  J 2 I o‘  [G M (D -t)  -  G ^ +1l(D - t) d G ^ C t )  +

+

=  E fK j{  1  J 2 f t  [ ^ )  -  G " - t+ I ! (D - t) dG ^—̂ ( t)  +

+ A  I K -11™  -  gW(D)] (*2+n> + 3 T w )  + T ^ e (w m)}’
00 00

where E(U) =  £ bnE(Un) and E(U2) =  £ b nE(U2). By changing the order of
n = l  n = l

summations and the order of integration and summation in the above equation, we obtain

E(W ) =  ^ x j ( J 2 J k J” t [G [n_k](D - t)  -  G[n-k+1](D - t)  dG[k_1](t) +

+ 5^  [ J n 2G[n_1](D) -  J n 2G [n](D) -  n£ n G [n-1](D) 4- n£ n G [n](D )] +
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+ a e ^ + « M e(Wm)}.

= EpMkl.DtJtG[- kl(l>H) - dGMft) +
+  ^ [ l  +  J^ (n + 1 )2G ^ (D ) -  J n2G[n](D) -  1 -  j ^ n + l J G ^ D )  +

+  j inG W (D)] + A E ^ + A E M E(WM)}.

-  etoII!1 dJ,GMw+ +W EM-

=  * * )  -  4 l » G W<°>) +  ^  +  ^ E ( W m)}. (2.23)

To simplify (2.23), we use the relations

E(K) =  (2.24a)

E(U) =  a* [1 +  m(D)] (2.24b)

r D
E(U2) =  E(S2)[1 +  m(D)] +  2fi\ t  dm(t) (2.24c)

J o

(see Balachandran and Tijms [1975]) and

£ n G ^ (D ) =  [  m(D—t)  dm (t) +  m(D), (2.24d)
n=i J o

(see Feller [1968] p.386) into (2.23) to obtain (2.22). The proof is completed.

We now analyze the distribution and the mean of customers delay in the M /G / l  

queue under the N—policy. To study this system, we again classify customers into types

one and two in  the same way as we did in the D—policy case. But, for the N—policy case,

we only have one type of n—busy period (and therefore no length biasing), and the total
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service time of the super—customer is simply the sum of N i.i.d. regular service times (and 

therefore a simpler expression of the service time of our "supercustomer"), making the 

analysis of distribution of customer delay straight forward. The results are summarized in 

the following theorem.

Theorem 7. The waiting—time distribution of a randomly selected customer in an M /G / l  

queue under N—policy is given by

P(W  < x) =  +  p F*H (x), (2.25)

N
where F(x) =  1 — E[( Y,S-—x )+]/(Nn)-, and the expected delay is given by

E(W ) =  +  E(W m). (2.26)

The explicit formula (2.25) is new, and is in agreement w ith a transform formula 

given by Neuts [1981]. Also (2.26) agrees w ith  a result given by Yadin and Naor [1963].

2.4 COMPARISONS BETW EEN O P TIM A L CONTROL POLICIES

As an application of the results obtained in the previous section, we w ill, in this 

section, compare M /G / l  queues under D—policy, N—policy and T—policy w ith respect to 

their long-run average operating costs.

Generally speaking, there are three natural cost components for the operation of a 

queueing system: (1) the running cost, that is, whenever the system is on, there is a linear 

cost of c0 dollars per unit time; (2) the switching cost, which is a cost associated w ith 

switching the system on and off, at respective cost cn and c12 dollars; and (3) the waiting 

cost, which is assumed to be an increasing function of customer delay.

O f these three types of costs, the long-run average running cost is given by a
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constant c0p, regardless of the type of policies being used and of the parameters values. To 

explain, we consider a stable G I/G /1  queue and define the service station alone as our 

"system". From L =  AW we have that the proportion of time the server is busy equals to 

p, regardless of what type of policy is being used. So, for comparison purpose, from now 

on, we w ill exclude this cost from consideration.

The switching cost in a busy cycle is also a constant, which can be written as c. =  

cu+ c12, because there are exactly one switching—on and one switching—off in each busy 

cycle.

The waiting cost is probably the most complicated cost component among the three, 

because it  is generally an intangible cost due to customers' negative impression on the 

system. Naturally, i t  is not easy to determine the specific form of this cost component. 

But in  general, the analyses of this cost component requires the distribution of customer 

delay in the system. Note that the distribution for customer delay in the M /G / l  queue 

under the D—policy is not available before.

In the literature, there exist two different cost assumptions for the M /G / l  queues 

under control policies. Yadin and Naor [1963] proposed a cost structure in which the total 

cost is the sum of the second and the th ird  cost components described above, where the 

th ird  cost component is assumed to be a linear function of customer delay. Balachandran 

[1973] proposed another cost structure which differs from the one by Yadin and Naor in the 

th ird  component. In his cost structure, this th ird  component is replaced by a cost that is 

assumed to be a linear function of time—average workload in the system. Balachandran 

and Tijms [1975] conjectured that w ith respect to this cost structure, the D—policy is 

superior to the N—policy. This conjecture was later proved by Boxma [1976]. In reality, 

we do not see many examples of systems in which the intangible costs are purely due to the 

existence of workload instead of due to the customer delay. Therefore, there is a practical
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need to compare these different control policies based on the cost structure proposed by 

Yadin and Naor [1963]. I t  is also of interest to know i f  the conjecture proposed by 

Balachandran and Tijm s [1975] and proved by Boxma [1976] s till holds under this different 

cost structure.

In the M /G / l  queue under the D—policy, the long-run average cost (per customer) 

in the cost structure proposed by Yadin and Naor [1963] is given by

c (d ) = i | k j + c2e (w ) ’ (2.27)

where K is as defined in the previous section and E(W ) is given by (2.22). Substituting 

(2.24a), (2.22) into (2.28), we obtain

=  l+ m (D J  c ^ 1—' +  J *  +  m(D—̂ t)]dm(t) +  ^ -^ m (D ) j +  c2E(W M). (2.28)

In general, i t  is d ifficu lt to minimize this function without a specific service—time 

distribution, because the renewal function m(t) in (2.28) is unknown. In what follows, we 

consider the special case of exponentially distributed service times. In this case, m (t) =  

t /n  and (2.28) simplifies to

C (D > =  +  w +  Xjf  W +  ¥ D]  +

_  A C  2 (2.29)

Since (2.29) is a differentiable convex function and D > 0, there exists a point of D, denoted

by D*, such tha t C (D*) =  m i n (D). Suppose D* satisfies the condition: jjjC(D)
D <00

By taking the derivative of (2.29) w ith respect to D and using (2.29), we have

=  0 .

a n e w — s i 5 c <d ) +  ^ c ip p  p . ^ A e (wm) (2.30)
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Letting (2.30) be zero leads to

C(D*) =  f  [D* +  ( l - * ) / i ]  +  c2E(W a). (2.31)

The optimal value D* can be determined by (2.29) and (2.31), i.e.

l i e  2
35+15* ' I  +¥ D*] = f [D* +

or equivalently,

which leads to,

D *2 +  2(jD* +  2(1 -p )n2 -  2p {\-p )n  ^  =  0,
C2

D *  =  i i J  1 +  2 (l-/> )(A g  -  1 ) ~ f i -  (2-32)

For D* to  be real, the expression inside the square root of (2.32) must be positive, which 

gives the condition

C l  v  1  

C 2  -  X

I f  D* >  0, then we must have

Cl ,
k : >  T  ■ (2.33b)

Comparison between (2.33a) and (2.33b) shows that the minimum cost is achieved 

at a positive D * i f  and only i f  condition (2.33b) is satisfied, because condition (2.33b) 

includes condition (2.33a).

In the case that (2.33b) is not satisfied, the mimimum cost w ill be achieved at the 

boundary, namely D * =  0. In this case, the system operates as a standard M /G / l  queue. 

In the following, we w ill only consider the case in which (2.33b) is satisfied.
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For further evaluation of C(D*), we let ^  ^  and substitute this ratio into (2.33)

and (2.32): then, the m inimum cost can be expressed as

C(D*) = J  1 +  2(1 -  p)(a -  1) -  p +  c2E(W m), (2.34)

where a >  1 because of (2.33b).

I t  is known that under the same cost structure as we used for the D—policy case, the 

minimum costs for M /G / l  queues operating under the T —policy and the N—policy are, 

respectively, given by

C (T*) =  J  2c,c2( l—,;)/A +  CsEfWy =  2 ( l- p ) /a  +  CjEfW,,), (2.35)

C(N*) =  -J 2c1c2( l—p)/A -  § f  +  C;,E(Wm) =  c j  2 ( l - p ) /a -  §£ +  CjEfW,,), (2.36)

where T *  and N* are optimal values of T  and N that minimize the long—run average costs 

for M /G / l  queues operating under the T—policy and the N—policy respectively (see, e.g., 

Cooper [1981], pp 243—253). And the value N* is given by

N* =  / 2 a ( H ) ,  (2-37)

(which w ill be used later). By definition, N* is an integer, but we treat N* as a real 

number for convenience. We consider the case N * >  1 only (because the system would be 

standard M /G / l  queue otherwise). From (2.34) and (2.35), we have

p ( l- p )2 +  \ Z a { l - p )
C(D*) -  C (T *) =  . (2.38)

1+2(1—p)( a?—1) +  \2 a { l-p )

I t  can be easily seen from (2.38) that C(D*) — C (T*) <  0 because the right-hand side of

(2.39) is negative. Therefore, the D—policy is superior to the T —policy. I t  is also known

that the N—policy is superior to the T—policy (see, e.g., Cooper [1981], pp. 243—253).
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Hence, the T—policy is the worst policy among these three policies.

Now, we compare the D—policy and the N—policy. From (2.35) and (2.36), we have

C ( D * ) - C ( N * ) = ^ ( l - 2 r t f l - ..................... 2.......... .............. 1. (2.39)
£0L L \2 a { l-p )+ 2 p - \  +  \2 a { l~ p y

I t  is easy to see that in order for (2.39) to be negative, either 1—2p or the expression in the 

square brackets must be negative. By analyzing these two expressions, we conclude that 

D—policy is superior to N—policy i f  and only i f  ^  <  p <  2.5 +  2^4a2—3a — 4a. Note that 

p <  2.5 +  2\4oi2—3a  implies N* > 1, a condition automatically satisfied given that p >  ^  . 

In other words, D—policy is superior to N—policy i f  and only i f  p >

We now consider a different special case where the service times are deterministic, 

given by a constant C. In this case, the comparison between the three control policies is 

fa irly  easy. From the definition of the D—policy, the server is turned on whenever the 

wnri-insH in the svstem exceeds a Dredetermined level D. Since the service times are* ' * *  v ““ "'*/ * Sr ——  —

deterministic, this is equivalent to saying that the server is turned on as soon as the 

( |C /D |+ l ) th customer in a busy period arrives, where the operation | t |  is defined as 

taking the integer part of t. Because ( |C /D |+ 1 )  is an integer, a system operating under 

the D—policy is identical to one operating under the N—policy. In fact, this conclusion is 

valid under any cost structure and for any arrival process (see Balachandran and Tijms 

[1975], where they claimed incorrectly that the D—policy is superior to the N—policy for 

deterministic services).

Discussion From the above analysis, we conclude that the D—policy is not always 

better than the N—policy, a conclusion different from that of Balachandran and Tijms 

[1975] and Boxma [1976]. This is due to the difference between the cost structure we use 

and the one by Balachandran [1973], in the nature of the th ird  cost component described at 

the beginning of this section. We consider this cost component as a linear function of
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customer delay, whereas Balachandran [1973] a linear function of time—average workload. 

Under the condition that the server is always on (as in the standard M /G / l  queue case), 

the time—average workload is equivalent to customer delay, because of the PASTA 

(Poisson Arrivals See Time Average) property of Poisson arrivals (W olff [1982]); and there 

is no difference between these two cost assumptions although they are defined differently. 

When server can be turned off, as required by the operation rules of all control policies, the 

time—average workload in  the system is no longer equal to  the customer delay. In  fact, the 

expected customer delay is larger than the mean time—average workload in the system; the 

difference is ; \E ( }k  | ) ^ ° in G ^ (D )  in the D—policy case (compare (2.23) w ith the expected 

time—average workload given in Balachandran and Tijms [1975]), and is (1—p ) ^ ^ -  in the 

N—policy case. These terms are due to the average delay to those who arrived during 

off—periods, caused by server absence. Since without this term, the customer delay would 

be equivalent to the time—average workload, i t  is easy to  see that the relative "weight" of 

this term in the cost function determines the relative performance of the control policy 

being used. We note that in the N—policy case, this delay depends only on the interarrival 

times while in the D—policy case, i t  depends not only on the interarrival times but also on 

the service times. In tu itive ly, when the influence of service times is negligible, the relative 

"weight" of this "extra" delay would also be negligible, a case close to the one studied by 

Balachandran. In the exponential service case, as we have seen, when traffic is heavy, the 

service times do not play an significant role; and i t  turns out that the D—policy is superior 

to the N—policy. When traffic is light, the conclusion is just the opposite. The same 

reasoning suggests that for deterministic services, there should be no difference in long-run 

average cost between the D—policy and the N—policy because the "randomness" of the 

service times vanishes. This reasoning also turns out to be true. We conjecture that this 

argument holds for all service distributions, that is, in the cost structure proposed by 

Yadin and Naor [1963], the D—policy tends to outperform the N—policy when traffic is 

heavy, and the reverse holds when traffic is light.
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C h a p t e r  3

C o m p u ta tio n a l A n a ly s is  o f  th e  C /G /l/K  Q u eu e

3.1 INTRODUCTION

As mentioned in Chapter one, almost all queues in reality have lim ited capacities. 

Only for queues whose capacities are so large that the fraction of lost customers is 

negligible can the infin ite—capacity approximation be justified. Consequently, many 

research results have been developed in the literature for the basic and important 

M /G / l /K  model (see, for example, Cohen [1982], Chapter I I I ;  and Keilson [1966]). Since 

the jo in t probability distribution of queue length and remaining duration of the service 

time, i f  any, in progress at customer arrival epochs, is the basic information needed for 

derivation of other quantities of interest in this model, i t  is typical to define the queue 

length and remaining service time as "state variables" and then study the resulting Markov 

process. Such analyses were complicated by the fact that a continuous state space is 

needed to monitor the remaining duration of the service time in progress. Recently, Niu 

and Cooper [1989] reexamined the M /G / l /K  model and proposed a new method of analysis 

which differs from the traditional approach in that they work w ith  a more detailed 

(continuous) state space that is judiciously designed to include enough information so that 

the solution of the problem could eventually be reduced to that of a discrete-state Markov 

chain embedded immediately after service starts, monitoring the number of customers in 

queue. They also demonstrated that i t  is possible to solve the fin ite—capacity and in fin ite - 

capacity M /G / l  queues by a unified method. Moreover, since their method is based on 

"sample averages", all of their results have explicit term—by—term probabilistic 

interpretations.
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Another important advantage of their method is that the analysis does not critically 

depend on the assumption of Poisson arrivals. In fact, i t  is not even necessary for the 

arrival and service processes to be of the usual renewal type. A ll that is needed is 

”sufficient exponentiality”  in  the arrival process so that a suitably designed embedded 

discrete—state Markov chain exists immediately after service—start epochs. This statement 

implies that the method introduced by N iu and Cooper [1989] is well suited for incor­

porating continuous—time—Markov—chain governed arrival processes. More specifically, it  

is easy to see that a natural way to introduce dependence in the arrival process is to 

augment the state space of the service-start embedded Markov chain to include one 

additional parameter to  monitor the "status" of the arrival process. I t  is also natural to 

assume that the probabilistic behavior of future arrivals from any given tim e t  onwards can 

be determined completely i f  the current "status" of the arrival process, which we take to be 

the state of the environmental Markov chain, is given. We w ill call arrival processes 

satisfying these conditions C—processes.

Obviously, C—processes offer great flex ib ility  in terms of characterizing and/or 

approximating general arrival processes in practical applications. Because of its generality, 

i t  is not clear how traditional methods might apply to the analysis of the C /G / l /K  model. 

The purpose of our work in  this chapter is to analyze the probabilistic behavior of the 

C /G / l /K  queue. Because our IHGliUVU of analysis is similar to the one used by Niu and 

Cooper [1989], the main focus here is on computational aspects of this model.

The outline of this chapter is as follows. In Section 3.2, we discuss our basic 

sample-average method and apply i t  to solve the C /G / l /K  model in its most general form. 

In particular, we derive the long-run average behavior of the number of customers in the 

system and the remaining service time, i f  any, in progress, as observed by arriving 

customers. In Section 3.3, we give a detailed discussion of computational issues. Complete
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procedures for the computation of the jo in t distribution of queue length and the remaining 

service times is given in this section. We also discuss how necessary computations can be 

simplified when the service time distribution is either generalized hyperexponential or 

Erlang.

3.2 TH E  C /G / l /K  MODEL AND ITS ANALYSIS

3.2.1 The C /G / l /K  Model

Denote by X  = {X (t) , t  > 0} the continuous—time environmental Markov chain,

w ith  a fin ite state space IN. The process X  has the properties that each time i t  enters state i

(i e IN): (1) the amount of time i t  spends in that state before making the next transition is

exponentially distributed w ith  rate z/j; and (2) when the process leaves state i, i t  w ill next

enter state j  w ith  probability p jj, where £ p^- =  1. An arrival process is called a C—process
jelN

i f  the probabilistic behavior of future arrivals can be determined completely from the 

current state of the environmental Markov chain X.

In the C /G / l /K  model, the system has a total capacity of K  customers including 

the one ( if  any) in service. An arriving customer enters the system only i f  i t  is not at fu ll 

capacity; otherwise, he is lost immediately w ithout receiving any service. Entering 

customers are served according to the firs t—in—firs t—out service discipline, without 

preemptions.

We w ill say that the state of the system is (j,x) i f  the number o f customers in the 

system equals j  (j > 1) and the remaining duration of the service in progress is less than or 

equal to x  (x > 0). For 1 < j  < K  and x > 0, denote by a j(x) the lim iting  proportion of 

customers who, on their arrival, find the system in state (j,x). We also define a0 as the 

lim iting  proportion of customers who, on their arrival, find the system empty, a0 and
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aj(x) together describe the lim iting  jo in t state behavior as observed by arriving customers. 

Given a0 and qJ(x), we can easily derive other information about the behavior of the 

system. For example, the distribution of customer delay can be determined from a0 and 

oj(x):
1 r K -1  rx r.

P(W  < x) = ----------=—  U °  +  . S G ^ x - t )  da i(x) , (3.1)
1 — a  (oo) L i =1 J o J

where [1 — a  (oo)] is the probability that a randomly selected customer actually enters the 

system. (3.1) is derived by conditioning on the state of the system at the arrival epoch of a 

randomly selected entering customer. Thus, the analysis of a0 and aP(x) plays an 

important role in the study of C /G / l /K  queues.

3.2.2 The Service—Start Markov Chain And the Arrival Pattern in Service Intervals

We first consider the C /G / l /K  queue. Suppose a customer is randomly selected 

from an infin ite poll o f customers. A t the arrival epoch of this customer, he w ill find the 

system to be either empty or containing j  (1 < j  < K ) customers. In  the latter case, the 

waiting customers arrived either before the start or during the "age" of the current service. 

Define the customers in queue who arrived before the start of the current service as type - 

one customers and those who arrived during the "age" of the current service type—two, 

including those who did not enter the system. I t  is easy to see that the number of type—one 

customers in the system immediately after service-start epochs is governed by a Markov 

chain. The state space of this Markov chain is {(m ,i), m 6 IN, i =  O', 0, 1, 2,..., K —2}, 

where the first component m is interpreted as the state of the environmental Markov chain 

of the arrival process, and the second component the number of customers in queue, w ith 

the additional stipulation that the service is the first one in a busy period i f  and only if  

i= 0 \  Because the number of type—two customers in the system is independent of the 

number of type-one customers, we can then decompose our analysis of a0 and qJ(x) into
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three basic parts: (1) determine oP, the fraction of customers who find the system empty; 

(2) determine the distribution of type—one customers by solving a service—start Markov 

chain; and (3) determine the probability for a randomly selected arrival to find (i) j  

type—two customers prior to the arrival and (ii) the remaining duration of the service time 

in progress less than or equal to  x. Because the evaluation of n° requires the stationary 

distribution of the service—start Markov chain, we w ill analyze this Markov chain first. 

Before continuing, we introduce the following notation:

N j(t) : the number of arrivals in a time interval [0, t] given that X(0) =  i, (3.2a)

T “ : time un til the nth arrival given that X(0) =  i, (3.2b)

Pij.(t) =  P[X(t) =  j | X(0) =  i], (3.2c)

Py(n,t) =  P[X(t) =  j, Nj(t) =  n | X(0) =  i], (3.2d)

A?(t) =  P[T5 < t], (3.2e)

Qij =  P[X(T!) =  j], (3.2f)

Thus, P ij(n ,t) is the probability of the event that starting from state i, the environmental

Markov chain w ill be in state j  at tim e t, and there are n arrivals during this time period
00

( it  is easy to see that P;,-(t) =  £ Pj=(n,t)); A=(n,t) is the probability that given the
J n = 0  •*

environmental Markov chain is in state i at time 0, the nth customer w ill arrive before time 

t; and Qj- is the probability of the event that starting from state i, the environmental 

Markov chain w ill be in state j  when the next customer arrives. P jj(n ,t), A j(n ,t), and Q jj 

are basic quantities associated w ith  the arrival process. We w ill treat these probabilities as 

input information to keep the analysis o f a0 and qJ(x) as concise as possible. Computation 

of these probabilities w ill be discussed independently in the next section.

Denote by the stationary state distribution of the service—start embedded 

Markov chain, where the superscript stands for the number of customers present in the 

queue immediately after a service start and the subscript m for the state of the
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environmental Markov chain. For m e IN and i =  O', 0, 1, 2,..., K —2, cr̂  is determined by

<?m =  £ +  ak) akn Qnm 5 (3.3a)
keIN new

4  =  E X  4  a j i 1- *  for 0 < j  <  K —3 , (3.3b)
keIN i = Oi

v o  K — 2  • 00 - .  .

^ - 2 =  S S 4  S 4 * 1- ,  (3.3c)
keIN i =0' j= K —2

K—2 .
S £ a\. =  1 (3.3d)

keIN i =0'

where a^m is an entry of the transition probability m atrix of the service—start Markov 

chain, and is given by

4 . = £ p k»(w) dGw -  (3-4>

(3.3) is obtained from standard stationary equations of the form t  =  *P. More specifically, 

i t  is derived based on the observation that the number of customers left behind by a service 

start is one less than the sum of (i) the number of customers left behind by the previous 

service start and (ii) those who arrived during this time period (except when the service 

start initiates a busy period). The solution of (3.3) is unique and can be solved by

standard methods. In our later analysis, we w ill simply treat cr  ̂as given.

We next evaluate the conditional jo in t probability of an arriving customer finding j

type—two customers in the system and the remaining duration of the service in progress to 

be less than or equal to x, given that he arrives in a "type—m service period" (defined to be 

a service period that starts w ith the environmental Markov chain in state m). We w ill 

denote this jo in t probability by ^ ( x ) . To evaluate z^(x), we consider a discrete renewal 

reward process whose "interevent times" are defined to be the numbers of arrivals in 

type—m service periods, and which earns a reward of one unit whenever an arrival finds j 

type—two customers in the queue and the remaining duration of the service in progress is
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less than or equal to x. Then, from standard renewal reward theory, &^(x) is given as the 

ratio of the expected reward in a typical renewal cycle to its expected "length". That is,

=  E p b l  J > (t+X ) -  G W1 dA;i+1 (3-5)

where Nm denotes the number of arrivals in a type-m  service period. The integral in (3.5) 

(giving the expected reward) is obtained by conditioning on the arrival time of the ( j+ l ) th 

customer after the start of a type—m service period (see Niu and Cooper [1989] for related 

discussions).

Treating and z/^x) as given, we are now ready to derive a0 and <^(x) for our 

C /G / l /K  system, which we do in the next section.

3.2.3 Derivation of o° And a-i(x) by "Successive Relative Sampling"

The derivations of crj, and ^ ( x )  in  the above subsection were based on the 

information on the "status" of the environmental Markov chain at the beginning of each 

service period. To simplify our analysis, i t  turns out to be easier to work w ith <*m(i,j,x), 0 < 

i < K —1, j  > 0, and x > 0, defined as the lim iting proportion of customers who, on their 

arrival, find that: (1) there are i type-one and j  type—two customers in the system

respectively; (2) the remaining duration of the service in progress is less than or equal to x; 

and (3) the environmental Markov chain was in state m at the start o f the current service. 

We also define in a similar way. and o^(i,j,x) are related to a0 and o>(x) by

a ° =  E , (3.6a)
meIN

q J ( x )  =  E

meIN L i=o
and

s  am( b .H - i5x) (3.6b)

aK(x) =  E E j 'E  um(i,j—L-i,x) j . (3.6c)
meIN j=K L i=o J
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The type—two customers counted by a ^ i j —1—i,x) for j  > K  in the righ t-hand side of (3.6c) 

include those who are lost after the start of the current service—time.

Observe that the proportion of arriving customers that are lost w ithout receiving
V

any service is given by a  ( o o ) ;  and, on the other hand, the proportion of those who actually 

enter the system is given by 1 — a  ( o o ) .  Since every entering customer who finds the system 

empty and the environmental Markov chain in state m triggers an (m ,0’)  type service, we 

therefore have

a 0
m  o '

leading to

i \ <7m’1  —  a (o o )

a° =  £ o£ =  [1 — «K( .) ]  £ o£'. (3.7)
meIN meIN

Our derivation of <*m(i,j,x) w ill be based on a successive relative sampling scheme. 

Let the original sample space be the set of all arriving customers; then the steps are as 

follows:

Step 1. Select a customer randomly from the original sample space. The proportion 

of customers in the sample space that are blocked on their arrival is given by 1 — a0.

Step 2. Select a customer randomly from the set of blocked customers. The relative 

proportion of customers from this subset of the original sample space that w ill "interrupt" 

a "type—m" service period is given by

E(N„)V‘

This expression is derived by considering explicitly biases caused by different in itia l 

conditions at the beginning of different types of service periods. More specifically, we view 

the number of arrivals in successive service period as "sojourns" in a discrete "time"
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semi—Markov process and apply Theorem 4.8.3 of Ross [1983] to derive this expression. To 

simplify later expressions, let E(N) be I^n[E(Nm)Si<r1jJ.

Step 3. Select a blocked customer randomly from those who "in terrupt" a type—m 

service period. The relative proportion of customers in  this further divided subset of 

customers that w ill find i type—one customers in the system on their arrival is given by

E ( N „ ) a ‘ <r‘

E jE t N . V *  Sjcr,

and that of those who find j  type—two customers in the system and the remaining duration 

of the service in progress less than or equal to x  is given by ^ ( x ) .

Since the sample space in each step of the above sampling scheme is a subspace of 

the one in the previous step, i t  is clear that the proportion of customers in the original 

sample space that: (1) are blocked on their arrival (step 1); (2) interrupt a type—m service 

period (step 2); (3) find i type-one customers in the system; and (4) find j  type-two 

customers in the system and the remaining duration of the service in progress less than or 

equal to x (step 3) is given by

E (N m) S ia i  «ri
(1 -  a0) x ---------------------x _ — —  x i^ (x ) , (3.8)

E(N) E , <

The last two terms in the above expression are related in product form because (as 

mentioned earlier) the number of type—two customers in the system as seen by a randomly 

selected arrival is independent of that of the type—one customers. This expression gives 

am(i,j,m ) for 1 < i+ j  < K —1. Rewrite ^ ( x )  in (3.5) as 0j,(x)/E (Nm), where

ffl(x) =  j jG ( t + x )  -  G (t)] d A j+ 1(t). (3.9)

Substituting this expression into (3.6b) and (3.6c), we get, for 1 < j  < K —1,
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“ t o  =  e W 1 - “ °> J  [ ' ! ' f 1M +  S o i ^ ^ w l .melNL k=o J
and

« “ ( .)  +  K 2
meIN j= K  L k = 0

These two expressions together w ith  (3.7) enable us to w rite our final results as

“ KW  =  ETN^ 1 -  a°> S % k > r ‘ w  +mcW k-L J

a0 =  S <£[1 -  aK(»)],
mGlN

(3.10a)

aj ( x ) = TT̂ TY S
E T O meIN

1 -  E oS'[l -  aK(co)] 
meIN

^ ’^ ( x )  +  S o j ^ ^ x )
k=0

, (3.10b)

for 1 < j  < K —1, and

a\ x ) E O T meIN meIN
a t ® ^  2 00 1 * 1 t

<t“ £ *J- 1(x) +  E E <r^J-k_1W'm "  m
j= K k = 0  j= K

(3.10c)

TT
The only unknown a  (oo) in (3.10) can be determined by solving (3.10c) after 

passing x  to oo., leading to

Or (oo) =
( 1 — )^nAi

E(N ) -  ( IL o- J 'J V ,

where
00

&  =  S
j = K L

<£*rV) + V
k = 0

(3.11a)

(3.11b)
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3.3 CO M PUTATIO N OF o° AND tt*(x)

In the previous section, we described our basic method for deriving a0 and <*j(x) for 

the C /G / l /K  queue. No specific structure of the arrival process other than the 

environmental Markov chain is required. Although many point processes can be viewed as 

C—processes, the difference between these processes are reflected only through the three 

basic probabilities P y(n ,t), A "( t)  and Q jj, which were taken as input information in  the 

previous section. In this section, we w ill first consider the case of the doubly stochastic 

Poisson input as an example, to illustrate the general approach of evaluating these 

probabilities (Section 3.3.1). We then discuss computational procedures for a0 and o j(x) in 

general C /G / l /K  systems (Section 3.3.2). A numerical example is given in Section 3.3.3. 

Finally, in Section 3.3.4, we discuss more efficient procedures for solving or0 and o^(x) when 

the service—time distribution is either generalized hyperexponential or Erlang.

3.3.1 Evaluation of P jj(n ,t), A “(t), and QSj

From the definitions of P jj(n ,t), A "( t) , and Q jj, it  is clear that these quantities are 

independent of any specific queueing models. Solving for these probabilities is a standard 

problem.

We first derive the derivative of A "( t)  (because only the derivative of A "(t)  is 

needed in our analysis, see expressions (3.10) and (3.9)). To do this, we note that i f  the nth 

customer arrives in  the interval ( t, t+ d t) , then there must be n—1 arrivals in  the time 

interval (0,t). Hence, by conditioning on the state of the environmental Markov chain at 

time t, we obtain

dA “ (t) =  im(n—l,t)A mdt. (3.12)

Therefore, relation (3.12) reduces the problem of evaluating dA "(t) to tha t o f evaluating
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Pij(n,t).

To compute the probabilities P jj(n ,t) and Qjj for i, j  G IN, we specialize our 

C—process to a doubly stochastic Poisson arrival process to illustrate the general approach 

of computing these probabilities.

In  a doubly stochastic Poisson process, customers arrive according to a Poisson 

process whose rate is governed by an continuous—time Markov chain. When the contin­

uous-time Markov chain is in state i (ielN), we let the arrival rate be A;.

To compute Q jj for this arrival process, we condition on whether a customer arrives 

before of after the environmental Markov chain changes its state. This leads to a system of 

linear equations

Q ij A i +  V\ PimQmj +  ^ij Aj +  V\ for i, j  G IN , (3.13)

where <5̂- equals 1 or 0 depending on whether i= j  or not. Since the subscripts of Q jj may 

take any value from the index set IN, this system of linear equations is of order | IN |2.

Next, we focus on the computation of the probability P jj(n ,t). We first state the 

boundary conditions for P ij(n ,t), i, j  G IN, as

l im  P ij(n ,t) =  6nQ6iy  
t ->0

(3.14)

By conditioning on the time at which the environmental Markov chain changes its state, 

we have, for i, j  G IN and n =  0,1,...,K—1,

f t  n
Pn(n,t) =  E 

'  J0k = 0 e ^ z / jd u  +  <Sjj n! e (3.15)

The probabilistic interpretation of this expression is as follows: i f  k customers arrive before 

the firs t transition, at time u, of the environmental Markov chain, then the remaining n—k
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customers must arrive in  the time interval ( t—u,t).

The reason for setting the range of n in P jj(n ,t) to 0 < n < K—1 is that we want to 

control the computational effort needed for solving this finite—capacity queue as the 

capacity of the queue increases. I t  is desirable to carry out our analysis w ith quantities 

that count arrivals only up to K. In fact, i f  this is done throughout, the computational 

effort involved in solving fin ite—capacity queues is less than that of solving corresponding 

larger capacity queues.

Differentiating (1,15) w ith respect to t, we get 

d p i j ( n , t )
n

=  £  
k=0

ft n r
+

lo ^=0 P m j(n  k ,t  u )
(A iu )k„—A;Uv> ^ d z/ie_ i 'iudu

( A j t r  —A;t 
n r  e e +  Aj^ j m " V i 1

Substituting the relation ^ P mj-(n,t—u) =  — Pmj-(n,t—u) into the above equation and

integrating the resulting system by parts, we obtain

a tp ij(n ,t) -
n
s

k = 0 ^ ke -Ai % Pta P„J.(n -k ,t-u ),ie -I'i“] u>t -

^ p inP „j (n -k , t -u ) , ie - ' ' i '1l  H  +
n
£

k=0

+
t  n

oZyik?oSmPimPmj( n- k ,t_ U ) d

j  u=0

U iu ) kc- (A ,+ ^ )u  
k! e

(A j t ) n —A;t
I Cn!

Ait)"'1,,—A,t
iPTT! e - ^
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By grouping terms and applying (3.15), we obtain, for i, j  6 IN and 0 < n < K —1,

a tp i j ( n,t) =  +  A jP jjC n -l^ ), (3.16)

where we have assumed that P jj(n—l, t )  =  0 when n =  0.

(3.13) and (3.16) are derived for a doubly stochastic Poisson process. But the 

method of analysis is valid for all C—processes.

(3.15) and (3.16) are actually systems of linear integral equations and linear 

differential equations respectively. Since the unknowns in (3.15) are conditional 

probabilities, the system must have a unique solution. On the other hand, (3.16) is derived 

from (3.15). Its solution must be the same as that of (3.15). In other words, i f  one of the 

systems has a solution, i t  must also be the solution of the other system. We write (3.16) in 

the m atrix form

arx i  =  A x i-

where X j =  ( P y ^ t ) ,  P2j (0 ,t)...... P ^ M ) ,  P2j ( l, t) ,...)T, j  € IN; A is a (K * |N |)  by (K * |N |)

matrix. From the theory of differential equations, the solution of this system is completely 

and uniquely determined by the eigenvalues o f the coefficient matrix A and the boundary 

conditions (3.14). Since the system 3 tx j  =  A x i is identical for every j€ IN, the general 

solution (i.e. solutions without using boundary conditions) for different X j, je IN w ill be 

identical. Therefore, to solve (3.16), we only need to solve one of the systems:
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^ X j  =  A X j, j  G IN and then use boundary conditions to determine X j for every j  € IN.

J
Computationally, solving a system of form 3 tX  =  A X  w ith  given boundary 

conditions involves calculation of 7j and v i? the eigenvalues and eigenvectors of m atrix A  

for i =  1, 2, K*|IN|. First, we consider the case that all the eigenvalues are real and

distinct. (Complex eigenvalues lead to trigonometric—function solution, which cannot 

occur in systems whose solutions are probability distributions because of the nonnegativity 

condition). According to differential equation theory, the solution of the system 

^ X  =  A X  is given by

X (t) =  £k vk e7kt. (3.17)
j

As a quick check, we can substitute (3.17) into the system ^ X  =  A X  , leading to

a t *  =  Sk7kv ke ^ ‘  =  S* A vke ^ ,

or equivalently, £ke^kt[A — 7kI]vk =  0, which is exactly the weighted sum of the charac­

teristic equations of m atrix A. Thus, (3.17) satisfies the differential equation system and is 

indeed the solution. The Euclidean norms of the eigenvectors in (3.17) are so far arbitrary. 

They serve as the free constants required in the general solution of the differential equation 

system ^ X  =  AX. These free constants w ill be determined by boundary conditions.

We now consider the case that not all eigenvalues are distinct; and suppose 7 is an 

n—fold eigenvalue of m atrix  A, and v is the corresponding eigenvector of 7. In this case, 

the solution determined by 7 w ill no longer be v -e ^ ,  instead, i t  takes the form

(bo +  b it +  b2t2 + ..............+  bn-itn-ije71 . (3.18)

Substituting (3.18) into the system ^ X  =  A X  , we obtain
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7(bo +  b it +  b2t 2 +  • • • +  bn-it11' 1̂ ^  +  (bi +  2b2t  +  • • • +  (n - l)b n- itn‘2)e7t

=  A(bo +  b it +  b2t2 + ............+  bn-itn-Oe1*.

Since this equation holds for a ll t, we have

( A - 7I)bo =  bi,

(A  -  7l)b i =  2b2,

(A  -  7l)b 2 =  3b3,
(3.19)

(A  -  7 l)bn-2 =  (n -l)bn -i,

(A  -  7 l)bn-i =  0 .

We see, from (3.19), that v, the eigenvector corresponding to 7, is the solution of bn-i; and 

all other coefficient vectors are recursively determined by v. Again, the Euclidean norm of 

v  is determined by boundary conditions. For a complete discussion of solution methods for 

systems of linear differential equations, please refer to  Chapter 7 of Brauer, Nohel, 

Schneider [1970].

3.3.2 Computational Procedure for o° and qJ(x )

So far, we have evaluated all the quantities required for the computation of o° and 

ftj(x) for the C /G / l /K  queue for j  =  1, 2, ..., K. A step-by-step computational procedure 

is now summarized as follows:

Step 1: Solve (3.16) for P ij(n ,t), i, j  e IN and n =  0, 1, ..., K—1. In this step, we 

need to compute all eigenvalues and eigenvectors of the coefficient m atrix  A  of the linear 

differential equation system =  A X j, which is of order K * |IN | . We also need to solve a 

system of linear equations to determine the Euclidean norms of all eigenvectors.
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Step 2: Solve (3.13) for Q^-, i, j  e IN and then compute a£m for 0 < j  < K —1 and 

m, k 6 IN using (3.4). The evaluation of the integral in (3.4) constitutes the main 

computational effort needed in this step.

Step 3: Solve (3.3) for <7̂ , m e IN and j  =  O', 0, 1,..., K—2.

Step 4: Compute 0^(x) for m e IN and 0 < j  < K —1 from relations (3.12) and (3.9), 

and determine cfi and o^(x) from (3.10)

ffStep 5: Compute a  from (3.11), while treating E(N) as a known constant.

Step 6: Determine E(N) by the normalization condition a0 +  Ej oi (oo) =  1.

Note that in Step 3, i f  we try  to compute o-k by (3.3), we need to compute a£m for j 

>  K—1, which in  turn requires knowledge of Pkm(j,t) for j >  K—1. As mentioned earlier in 

the previous subsection, we do not calculate Pkm(j,t) for j  >  K —1 in our procedure. 

Therefore, we must express (3.3c) in terms of information that is already available. Here, 

we use (3.4) to express (3.3c) as

K 9 K—2 00 i+1 i2 -  y  v  /r1 y  aJ+ i—1, Zj' h ^k h akm 
keIN i =0' j=K—2

K—2
— E S aj E f•^5km(j+l—bt) dG(t).

keIN i = 0 ' j = K —2 J o

By exchanging the order of summation and integration in the above equality and using the 
00

relation Pkm(t) =  .EoPkm(j,t) , we fina lly express (3.3c) as

a l~ 2 =  S V  a l f °  E Pkm( j+ l- i, t )d G ( t)  
keIN i =o- Jo j= K — 2

K — 2 poor K —1
= S S 4  Q p k„ W - .? Pkn(j+ l-i,t)ldG (t) 

keW i=o’ J»L ) - °  J
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K—2 . r K—1
=  2 ^ akm ~  , akkeW i=o' L J -°

j + l - ikm (3.20)

where

km= ĴPk„(t) dG(t). (3.21)

The probability Pkm(t) (see (3.2c)) satisfies a system of linear (Kolmogorov 

backward) differential equations given by

I f P  i j  ( t ) =  ( t ) -  * ,P , ,  ( t ) for i, j  e IN (3.22)

(see, for example, Ross [1983] pp. 147—151). The solution of (3.20) can be obtained by the 

same approach used earlier for solving (3.16).

For the same reason, we must rewrite (3.10c) so that i t  involves only 0^(x) for j  < 

K—2. To do this, we define

0m(x ) =  J j G(t+X) “  G(t )] SrPmrOOMt- (3.23)

Note that

S  r [ G ( t + X ) ~~ G (t )l S rP mr(Jit ) Ard tJ=0 j=o-Jo

= J j G(t+X) — G(t)]

=  J j G ( t + X )  “  G ( t ) l  S r  P m r( t ) A r d t

=  O J x ) .

jfo Ardt

(3.24)

W ith  (3.24), (3.10c) can be expressed as
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K—l

= E p rjM 1 - [1 -  “Kl K  K (x) -  ,5 . s»_1(x)} +

(3.25)

Correspondingly, the expression of (3.11b) changes to

A, =  *»
K—1 K—2 K_1

/« (» ) -  J?0 +  ks » i  [» „(•)  - (3.26)

To compute E(N), we pass x  in (3.10a), (3.10b), and (3.25) to in fin ity  and rewrite 

these expressions as

a0 =  a0,

m  ma’W  =  E p j jd  -  “ \ | , K  <  W  +  k? „ «  > )

for 1 < j  < K—1, and

aK(°°) — E (N )^1 — a°) ^ ' { w - V « r i w }  +  

s 2

meIN 
K—2

+

Summation of o> over all j  in (3.27) produces

“0 +  Ew (1 - a0)m^
O' K~2 k<7 +  £ <7
m k =0 m =  L

(3.28) implies that

E(N) =  £
meIN1- + k5.«i

K—2

(3.27a)

(3.27b)

(3.27c)

(3.28)

(3.29)
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3.3.3 A  Numerical Example

In this subsection, we work w ith a specific example to illustrate the step—by—step 

computational procedure given in the previous subsection. In order to simplify the 

calcultion, we choose the capacity of the system to be 3, i.e. K  =  3. We also restrict the 

state space of the environmental Markov chain to  2, i.e. IN =  {1, 2}. In our example, the 

service—time is uniform ly distributed in the interval of (0,1). A ll other parameters of the 

system are given as:

A^O.9, A2=1.9, i/j=0.1, i/2= 0.2; 

pn=0, p12= l ,  p21=0.5, p22=0.5 .

As described in the previous subsection, we first solve (3.16) for P ij(n ,t), i, j  =  1, 2 

and n =  0, 1, 2. In our example, the system can be expressed as:

and

PPii('0,tV -1 0.1 0 0 0 0 ■ Pn(0,t)
P2i(>0,t 0.1 -2 0 0 0 0 P 2l (0,t)

d Pn(; l, t) 0.9 0 -1 0.1 0 0 P l l ( l5t)
dt P 2ltM l 0 1.9 0.1 -2 0 0 X

P 2l ( l j t )  
P ii(2 ,t)P ll( 2,t) 0 0 0.9 0 -1 0.1

P2l(*2,t) 0 0 0 1.9 0.1 -2 P2l(2,t).

"P 12<'0,tV -1 0.1 0 0 0 0 ' p 12(0,t)
P22i"o,t) 0.1 -2  0 0 0 0 p 22(0,t)

d P l2(M ) 0.9 0 -1 0.1 0 0 P l2( l, t )
a t P221>i,tj 0 1 .9 0 .1 -2  0 0 X

P 22\l? t)
P 12<2,t

2,t)
0 0 0.9 0 -1 0.1 P12 2,t

.P221 0 0 0 1.9 0.1 -2 .P 22(2,t)_

(3.30a)

(3.30b)

The eigenvalues of the coefficient m atrix in either of these two subsystems are

7i  =  72 =  73 =  —2.009902,

74 =  75 =  76 =  —0.990098.

Therefore, the solution corresponding to each distinct eigenvalue takes the form given by
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(3.19). Following the procedure described in Section 3.3.1, we obtain

Pn(0,t) =  0.0097eTlt +  0.9903e74\  

p 21(0,t) =  -0.098e7lt +  0.098e74t,

Pu ( l , t )  =  (0.0188+0.0183t)e7 lt +  (-0.01S8+0.9009t)e74t,

P2i ( l , t )  =  —(0.0943+0.1853t)e7 lt +  (0.0943+0.0893t)e74t,

Pu(2,t) =  (—0.0271—0.0195t+0.0173t2)e7lt +  (0.0271-0.0078t+0.4098t2)e74t, 

P21(2,t) =  —(0.0939+0.1828t+0.1751t2)e7lt +  (0.0939+0.0871t+0.0406t2)e74t,

P 12(0,t)  =  —0.098e7lt +  0.098e74\

P22(0,t) =  0.99e7lt +  0.01e74\

P12( l , t )  =  —(0.0946+0.1853t)e7lt +  (0.0946+0.0892t)e74,t

P22( l , t )  =  (—0.0189+1.872t)e7 lt +  (0.0189+0.0088t)e74t

P12(2,t) =  —(0.0886+0.1751i+0.1773t2)e7lt +  (0.0886+0.0871t+0.0406t2)e74t,

P22(2,t) =  (-0.0273-0.045t+1.7693t2)e7lt +  (0.0273+0.0173t+0.004t2)e74t.

Similarly, we obtain from (3.22) that

These expressions enable us to evaluate the transition probabilities of the service— 

start embedded Markov chain. (3.4) now specialized to
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P n (t) =  0.5(l+e~°-2t), 

P2i( t)  =  0.5(1—e—0'2 t),

P i2(t) =  0 .5 (l-e “ ° -2 t), 

p 22(t) =  0.5(l+e_0-2t).

ai2 =  f XP i2(0,t)d.t =  0.02, 
Jo

a 2̂ =  P pB (0,t)dt =  0.4329 
Jo
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afj =  f 1Pn(2,t)d t =  0.0682, 
J o

a |x =  f 1P2i(2 ,t)d t =  0.0078, 
Jo

Similarly, (3.21) leads to

an  =  [ 1P n(t)d t =  0.9532, 
Jo

a2i  =  PP2i( t)d t =  0.0468, 
Jo

ai2 =  f l p i2 (2 ,t )d t  =  0.0079 
Jo

a|2 =  [1P22(2,t)dt =  0.1462 
Jo

ai2 =  11Pi2(t)dt =  0.0468, 
Jo

a^2 =  f1P22(t)dt =  0.9532. 
Jo

The linear-equation system (3.13) is given by

Qn =  O.IQ21 +  0.9,

Q21 = (0.1/ 2.1)Qn +  (0.1/2.1)Q2i,

Q l2 =  O.IQ22,

Q22 =(0.1/2.1)Q i2 +  (0.1/2.1)Q22 +  1.9/2.1 ,

w ith solution

Qn =  0.9045, Q2i  =  0.0452,

Q i2 =  0.0955, Q22 =  0.9548.

In our example, (3.3) is specialized to the following system:

°"l = (allQll+al2Q2l)(al P ° l ) P (a2lQnPa22Q2l)(<72 "I" °2 )’

<t \  =  a111(or?'+ c r\ ) +  a^tf®  +  <j \  ) +  a^o j +  a ^ 4

2̂ = (allQl2Pal2Q22)(°i P ) P (̂21̂12“̂a22Q22)(̂2 P ̂2 ),

&2 =  ai2(^l P ) +  2̂2 (^2  “P <̂*2 ) “P &l2°i P 2̂2̂ 2?

d\ = (a11—âj—aj1)(<71 + (T1 ) + (&21-̂a21—a2l)(̂2 P °2 ) P (aU—ail)<7l P (a21 a2l)̂2 ’

°2 =  (al2—ai2—ai2) ( P al ) P (a22~a$2~a22)(cr2 P °2 ) P (al2—al2)crl P (a22—a22)0’2 ’ 
O' , O' . O' , O' , 1 , 1 ,

By substituting the values of all the coefficients into the above system, we obtain
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4' =  0.5733(4 +  4 )  +  0.0377(4 +  4 ) ,

4  = 0.2384(4 + 4 )  + 0.0156(4 + 4 )  + 0.6327o \ + 0.024 , 

4 ' = 0.0794(4'+ 4 )  + 0.4152(4'+ 4')» 
4  = 0.0156(4 + 4  ) + 0.2827(4 + 4  ) + 0-024 + 0.43294 ? 
4  = 0.082(4'+ 4  ) + 0.0113(4 + 4  ) + 0.32044 + 0.02694 , 
4  = 0.0112(4 + 4 )  + 0.2376(4'+ 4 )  + 0.02684 + 0.52044

O' O' O' O' 1 14 + 4 + 4 + 4 + 4 + 4 = !
Solving this system leads to the following solution

4  =  0.2591, 

4  =  0.1921, 

4  =  0.0621,

4  =  0.1638, 

4  =  0.1625, 

4  =  0.1604.

We next compute ^ ( x )  for m =  i, 2; j  =  0, 1 and ^ (x ) , 02(x ) . By (3-9), (3.23) and 

(3.12), we have

4(x) =  x|* XJo.9Pn(0,t) +  1.9Pi2(0,t)jdt +  J1 (1—t) j^0.9Pn(0,t) +  1.9Pi2(0,t) dt, 

4 (x ) =  x£"X|o.9P2i(0,t) +  1.9P22(0,t)jdt +  | |  (l-t)[o .9P 2i(0,t) +  1.9P22(0,t) dt, 

4 (x ) =  x |*  X||o.9Pii(l,t) +  1.9Pi2(l,t)jd t +  | |  (1—t) ||o.9Pii(l,t) +  1.9Pi2(l,t)jd t,

. r___
4 (x ) =  x j |0.9P2i(I,t) +  1.9P22(l,t)Jdt +  J (l-t)|0 .9 P 2i(l,t) +  1.9P22(l,t) 

^(x) =  x|* X |o.9Pn(t) +  1.9Pi2(t)jdt +  |*  (1—t)

dt,

0.9Pn(t) +  1.9P12(t) dt,

dt.02(x) =  x £ 'X[o.9P2i(t) +  1.9P22(t)j dt +  | |  (1-t) 0.9P2i(t) +  1.9P22(t)

Substituting expressions of Pnm(j,t) for m, n =  1, 2; j  =  0, 1 correspondingly into this 

system and integrating the resulting system, we obtain

4 (x ) =  0.4025 +  0.9999x +  0.0059e_7lX -  0.4084e” 72X 

4 (x ) =  0.1001 +  1.0003x - 0.0595e 7lX — 0.0406e 72X
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0j(x) =  1.1561 +  1.0004x +  0.0276e_7lX -  1.1837e“ 72X -  0.0111xe~7lX +  0.3715xe_72X , 

^ (x )  =  0.3824 +  1.0047x -  0.2203e_7lX -  0.1621e_72X +  0.1125xe_7lX +  0.0385xe_72X , 

0t(x) =  -10.2341 -  l . l x  -  0.7x2 +  10.2341e°‘2x ,

02(x) =  10.2341 +  3.9x -  0.7x2 -  10.2341e°-2x .

From the above expressions, we can easily get

0?(1) =  0.3472,

0}(1) =  0.0934,

0X(1) =  0.4659,

0g(l) =  0.5487. 

0^(1) =  0.2489, 

02(1) =  0.9341.

Now, we have only two unknowns to be computed, i.e. a3, the blocking probability 

and E(N), the average number of customers arrivals in  a service period. From (3.26), we 

have

f t  =  (*?' +  < r°)[ft( l)  -  0?(1) -  0,(1)] +  < r j[ft( l)  -  «»(1) ] ,  

f t  =  (<r°' +  < r° ) [ft( l)  -  «S(1) -  ^ ( 1)] +  1) -

Or equivalently,

&  =  0.0188, /32 =  0.1064.

Therefore (by (3.11a))

0»(1) =
(1 - < 7 l ' - 4 ') ( . 0 1+P 2 )

E(N) -  t ^ ' + ^ 'X / J . + f t )  

0.0723

E(N) -  0.0529 

In our case, (3.29) specializes to

E(N) =  (<7i + a i +  0' i)^ 1( l )  +  (02 + <r2+<T2)^2(x )

Therefore,

=  0.6938.
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0.0723
a ^ l )  = ---------------------- =  0.1128 .

E(N) -  0.0529

Thus, our final solution is expressed as 

a0 =  0.3752,

a*(x) =  0.4063 ̂ (x )  +  0.2939 ̂ (x ) ,

o*(x) =  0.40636>l(x) +  0.2939 ̂ (x )  +  O.O5590$(x) +  0.1445^(x),

o ^x ) =  0.4623[^(x) -  0°(x)] +  O . 4 3 8 3 [ 0 2 ( x )  -  0g(x)] -  0.4063^ (x )  -  0.2939 0£(x),

That is,

a0 =  0.3752,

a*(x) =  0.193 +  0.7003x -  0.0151e_7lX -  0.1779e_72X,

a2(x) =  0.6191 +  0.9022x -  0.0618e_7lX -  0.5573e_72X +

+  0.0316xe_7lX +  0.1622xe_72X,

o ^ x ) =  -1.058 -  0.4017x -  0 .6304x2  +  0.2459e°*2x +

+  0.0768e~7lX +  0.7352e-72X -  0.0285xe“ 7lX -  0.1622xe_72X.

3.3.4 Computational Scheme for Specialized Service Times

We have now completed the analysis of a0 and c j(x ) for the C /G / l /K  queue. As 

we have seen in the previous sections that the computation of a0 and a^(x) for the 

C /G / l /K  queue requires the solutions of systems of differential equations of the forms 

given in (3.16) and (3.22). In addition, numerical integrations over in fin ite  intervals are 

also required for the computation of the important quantities a ^  and ^ ( x )  for m, r  G IN 

and 0 < j  < K —1, given in (3.4) and (3.9) respectively. From the numerical—computation 

point of view these calculations involve significantly more computational effort than simply 

working w ith linear equations. When the distribution of service times in the system is
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assumed to be arbitrary, this is a price we have to  pay. However, we can avoid such 

computational burden when the service—time distribution in the C /G / l /K  queue system is 

either generalized hyperexponential or Erlang. In these special cases, we only need to solve 

systems of linear equations. Hence, the procedure w ill be much efficient. Since any 

distribution can be approximated by a generalized hyperexponential distribution our 

method to be introduced in this section has substantial value in applications. We begin by 

defining the Laplace transforms of P jj(n ,t) and P jj( t)  as

^ j(n ,s ) =  J^P ij(n,t)e—Stdt, (3.31)

and

J^(s) =  P  P ,5(t)e_stdt, (3.32)
*J jo *J

respectively. We now assume that the service—time distribution G( •) has the form

G (x )= k£ ? k( l —e W ) ,  (3.33)

where L is a fin ite positive integer and the "weights" £k for 1 < k < L satisfy the condition

=  L

From (3.4), we then have that for m, r e IN and 0 < j  < K—1,

roo

^ r  =  j 0P „r( j.‘ )d<3(t)

=  J /m r (M )  d fS kfkd

=  S k « ^ k £ p „r( j.t)e _/‘kXdt

=  ^k^k^k^ir(h^k)’ (3.34)
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where the last equality in (3.34) is a consequence of (3.32). Similarly, we have for m, r  e IN

(3.34) and (3.35) show that the integrals in the expression of a ^  and amr can be expressed 

as a weighted sum of the Laplace transform of Pmr(j,t) and Pmr(t) respectively. When 

these expressions are used as final formulas for numerical computation (see Step 2 of our 

computational procedure, Section 3.3.2), the corresponding numerical integrations w ill no 

longer be necessary.

We can also express integral formulas for ^ ( x )  as weighted sums of ^ r(j,//k). 

From (3.9) and (3.12), we have that for m e N and 0 < j  < K—1,
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^tnr

(3.35)

*A(x) =  j jG ( t + x )  -  G(t)]dAA+ I(t)

By changing the order of summation and integration in the last equality, we now obtain

(3.36)

a linear combination of ^ nr(j,/ik). Similarly, we have, by (3.23) that
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0£(x) =  J jG (t+x ) -  G(t)]SrP „r(t)A rd

=  sk [fk(l -  • (3-37)

Now, all integrals in our computational scheme (Section 3.3.2) have been changed 

into linear combinations of «^,r(j,/*k) and «^,r(/*k). This is an important simplification of 

our numerical scheme, because linear—combination schemes are implemented easily in 

numerical computation, while integrations, on the other hand, are implemented through 

various approximation schemes that require large volume of operations to get reasonably 

accurate results, and hence are much more time consuming (especially for integrations over 

infin ite intervals).

The Laplace transforms of Pmr(j,t)  and Pmr(t), on the other hand, satisfy two 

systems of linear equations respectively. These two systems of linear equations can be 

derived by taking the corresponding Laplace transforms in equations (3.16) and (3.22) 

respectively. From (3.16), we obtain

-  P m r ( j> ° )  =  ~  ( V ^ m ) ^ m r ( b s )  +  ^ m ^ m r C H ’ 5 ) ,

where we have substituted the relation

^ - s t  Td e dt =  S^mr(j,s) - P mr(j,0)

to obtain the left-hand side terms. By using boundary condition (3.14), we obtain, for 

m, r  6 IN and 0 < j  < K —1 that

-  V m r  =  ^n&Pmi^ir(bS) “  ( K + l' J  ̂ mr(bs) +  ^ m r C K M ) -  (3.38)

Similarly, using boundary condition Pjj(O) =  <5̂-, we obtain from (3.22) that
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S^U (S) -6%  =  V iP im ^ i j ( s ) for i, j  G IN. (3.39)

In  contrast w ith  (3.16) and (3.22) which define two system of differential equations, (3.38) 

and (3.39) are two systems of linear equations w ith  parameter s. And therefore, (3.38) and

(3.39) are much easier to  solve. One possible procedure for solving (3.38) and (3.39) is as 

follows: solve (3.38) and (3.39) for the analytic solutions of ^ , r(j,s) and ^ j(s ) ,  leaving s as 

a parameter; then let this parameter in ^ nr(j,s) and ^ j(s )  take specific values of fik for k =  

1, 2, ..., L to obtain «^,r(j,/Jk) and ^ ( f i k) for m, r  e IN. We do not, however, recommend 

this scheme, because numerical computation generally does not produce parametric solu­

tions. In practice, we should replace s in (3.38) and (3.39) by specific values of f ik before 

solving for them. Consequently, in each of (3.38) and (3.39), there are L systems of linear 

equations that need to be solved; and in each of (3.16) and (3.22), there are Kx|IN| +  1 or 

| IN | - h i  systems of linear equations that need to be solved (see Section 3.3.1 and Section 

3.3.2). When L is comparatively small, this computational scheme w ill be very efficient, in 

addition to  the important advantage of taking no numerical integrations in the procedure.

The same argument applies when the service-time distribution is Erlang. The only 

difference is that and #J,(x) are no longer linear combinations of ^ nr(j,s). Instead, they 

are expressed in terms of the derivatives of ^ , r(j,s). Let G now take the form

(3.40)

which is the Erlang distributed w ith  parameters (/z,k) We have, from (3.4), that

a L  =  £ p mr0 .t)dG (t)
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Uk
WW- J

KD f
Pmr(j,t) e 'V 'M t .

Applying the transform relation

£ e  M [Pmr( j, t ) tk] dt =  

we obtain, for m, r  € IN and 0 < j  < K—1, that

^ r (k -1)!  ̂ ^  1 d

Similarly, a,,,,, is expressed as

amr =  ( T - n T  ( - l ) k_1 ^ T T F T ^ ir^ )-

We also have, by (3.9) and (3.12), that

#A(X) =  j j G(t+ x ) “  G O O ^ A J j+ M )

=  j ; r e ^

=  TT^rn" f *  Pt Xe“ ^yyk-1dyl ErA rPmr(j , t ) d t.
V“  ‘ /V O U t

Taking derivative of 0'^(x) w ith  respect to x  in the last equation, we obtain

d3̂ m(x ) -  (k -1)'! 0{ e ^ t+ X ^(t+ x )k' 1SrArPmr(ht ) } dt

p,k
W W .

t^xk-i_1 ErArPmr(j,t)
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where we used the binomial expansion of ( t+ x )k_1 to  obtain the second equality. (The 

interchange of the order of the derivative and the integration can be easily justified.) After 

substituting (3.41), this last expression further reduces to

iUW - [Pi1)xk'i"'e_'“] M^(wo]}- (3-44)
Integrating (3.44) over the interval [0, x] and using the condition 0j,(O) = 0 and the relation 

we fina lly obtain

“  E M 1 -  }•
(3.45)

Similarly, we have

k-i  i
«n(x) =  ks

mV ’  i = 0 1 i !  n =0  n! }•
(3.46)

In (3.42), (3.43), (3.45), and (3.46), calculations of aj,,. and #^(x) require the 

derivatives of ^ nr(j,/i) and ^ mT{y) up to the (k—l ) th order. Similar to the generalized— 

hyporexponential case, these derivatives can be derived by solving k systems of linear 

equations. Take, for example, the derivatives of «^r(j,/j). We first solve ^ , r(j,/i) from 

(3.38), and then take derivatives of (3.38) w ith respect to t  and solve the resulting system 

of equations for g^<^nr(j,Af), after substituting the obtained «^,r(j,/z) into the system. This 

process is then repeated un til a ll of the ^ k - i ^ irO ^ )  3X6 s° lved- In this step, k systems of 

linear equations need to be solved consecutively. I t  is interesting to note that in the
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generalized—hyperexponential case, we also need to solve systems of linear equations for 

^ r(j,//k), k  € {1, 2, L }. But the operations for the generalized—hyperexponential—

service case are carried out in a parallel manner (while in the Erlang—service case they are 

done consecutively), reflecting the structural difference between Erlang distribution and 

the generalized hyperexponential distribution.

Finally, we point out that the method of analysis and the computational procedures 

discussed in  this chapter also apply when the service times are not renewal. A ll that is 

needed is sufficient information about the relationship between consecutive service times so 

that a suitable service—start Markov chain can be formulated. The only extra effort 

needed is to include necessary additional parameters in the state space of the service—start 

Markov chain to keep track of the information about the service process. For specific 

examples (semi—Markovian service, exceptional first services, and server vacations in the 

M /G / l /K  model), please see Niu and Cooper [1989].
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